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Introduction

What Philosophy of Mathematics Is Today 

One of the starting points for this book project was a job talk that I 
presented at the philosophy department of some research university. I 
discussed how mathematical signs shift their meanings and described 
mathematical processes of sense making, some of which are covered 
in this book. One of the department professors commented succinctly 
that “this is not philosophy of mathematics.” He explained that a phi-
losopher of mathematics should take the notions and terms that we or 
our historical sources use when discussing mathematics and provide 
them with some sort of rational reconstruction. That was not what I 
was doing.

In a sense, this professor was right. What I did was not philosophy 
of mathematics as usually practiced today. This can be easily verified. 
I went through the top 150 entries in the Philosopher’s Index with the 
words “mathematics” or “mathematical” in their abstracts that were 
posted over the last couple of years. This showed that the most popu-
lar debate in contemporary philosophy of mathematics, representing 
almost 40 percent of research production, is how to describe the mode 
of existence of mathematical entities, especially in the context of their 
application to natural sciences (the PhilPapers bibliographies suggest 
a similar proportion).

So the main problem that bothers mainstream philosophy of math-
ematics today has to do with the kind of reality attributed to mathe-
matical objects and statements. Indeed, in most situations, one speaks 
of mathematical objects and statements like one speaks of other scien-
tific objects and statements. But there are obvious problems with this 
way of speaking, because mathematical objects are hard to tie down to 
spatio-temporal phenomena, and the claims that involve mathematical 
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objects are therefore hard to conceive as truly referential, as realists 
require. At the same time, many mathematical claims are highly ap-
plicable to empirical phenomena, which makes it difficult to think of 
them as contingent constructs of reason, as nominalists tend to do.

So the main contemporary philosophical task in mainstream phi-
losophy of mathematics is to trace a rational account of the terms 
“true” and “exist” so as to allow their consistent use in both science 
and mathematics, and, at the same time, respect the common usage of 
these terms and common mathematical habits. But this latter pair of 
constraints is in conflict: we may either redefine “true” and “exist” 
creatively to generate consistency over their use in science and math-
ematics, but lose contact with common usage, or we can hold on to 
common usage, but face obstacles when applying these terms to real, 
existing mathematical practice. The philosophical debate is thus about 
stretching the terms “true” and “exist” in ways that cover the most 
important aspects of common usage and conceptual consistency. Since 
deciding what is “most important” involves nonconsensual prioritiz-
ing, the debate continues to spin.

This analytic approach refers to an established canon of philoso-
phies of mathematics. The main references are the following: Plato’s 
transcendent and ideal mathematical forms recollected through em-
pirical experience and dialectical reason; Kant’s view of mathematics 
as a science of the forms through which we organize time and space (a 
middle ground between empiricist accounts of mathematics in terms 
of observations in time and space and rationalist accounts in terms of 
pure nonempirical reason); the logicist attempt to reduce mathematics 
to logic as the science of pure reason; the intuitionist attempt to con-
fine mathematics to what can be actually constructed in our minds (or, 
more exactly, in a Kantian-like form of temporal intuition); the for-
malist articulation of mathematics as a system of meaningless signs 
subject to purely syntactic rules whose consistency is to be analyzed 
by means of a constructive and finitary logic; the logical positivist ar-
ticulation of mathematics as a system of syntactic logical truths used 
to tie together empirical observations; and the empiricist-holist view 
of mathematics and empirical science as an inseparable continuum. 
This canon provides the backdrop for the contemporary search for a 
satisfactory articulation of mathematical objectivity and truth.
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This entire canon revolves around a foundational question: “To what 
kind of ontological ground can we reduce mathematics?” It is tied to-
gether by a search for a unified ontological substrate and for a unified 
language to discuss it. So from the point of view of this tradition, the 
professor who criticized my presentation was right. I was not doing 
philosophy of mathematics, and I continue not to do it in this book. 
(Obviously, I didn’t get the job.)

What Else Philosophy of Mathematics Can Be

Before trying to articulate a different kind of philosophy of mathemat-
ics, I should explain who this philosophy is meant for. As I see it, there 
are three main target groups for the philosophy of mathematics: phi-
losophers, mathematicians, and people who engage with mathematics 
less intensively in their professional and daily lives.

Philosophers are usually interested in mathematics as a test case for 
some general philosophical system. Since it is not just any test case, 
but one that has some extreme characteristics (for instance, it is seen 
as an extremely rigorous branch of knowledge), mathematics is con-
sidered a very important test case. Since the interest in mathematics is 
usually entangled with science and logic, and since these domains are 
favorites of the analytical tradition, philosophers’ philosophy of math-
ematics is usually analytic—hence the current focus on analytic ver-
sions of realism versus nominalism and questions concerning math-
science relations.

Mathematicians, as far as I can see, are not terribly interested in 
the philosophy of mathematics. They often have philosophical views, 
but they are usually not very keen on challenging or developing 
them—they don’t usually consider this as worthy of too much effort. 
They’re also very suspicious of philosophers. Indeed, mathematicians 
know better than anyone else what it is that they’re doing. The idea of 
having a philosopher lecture them about it feels kind of silly, or even 
intrusive.

So we turn to people who have something to do with mathematics 
in their professional or daily lives, but are not focused on mathemat-
ics. Such people often have some sort of vague, sometimes naïve, con-
ceptions of mathematics. One of the most striking manifestations of 
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these folk views is the following: If I say something philosophical that 
people don’t understand, the default assumption is that I use big pre-
tentious words to cover small ideas. If I say something mathematical 
that people don’t understand, the default assumption is that I’m say-
ing something so smart and deep that they just can’t get it.

There’s an overwhelming respect for mathematics in academia and 
in wider circles. So much so that bad, trivial, and pointless forms of 
mathematization are often mistaken for important achievements in 
the social sciences, and sometimes in the humanities as well. It is often 
assumed that all ambiguities in our vague verbal communication dis-
appear once we switch to mathematics, which is supposed to be purely 
univocal and absolutely true. But a mirror image of this approach is 
also common. According to this view, mathematics is a purely mechan-
ical, inhuman, and irrelevantly abstract form of knowledge.

I believe that the philosophy of mathematics should try to confront 
such naïve views. To do that, one doesn’t need to reconstruct a ratio-
nal scheme underlying the way we speak of mathematics, but rather 
paint a richer picture of mathematics, which tries to affirm, rather than 
dispel, its ambiguities, humanity, and historicity.

This approach represents a minority strand in the philosophy of 
mathematics—but a growing minority. There’s a whole tradition that’s 
been coming together since the 1980s (if not earlier), which, today, is 
referred to under the title “philosophy of mathematical practice” (Az-
zouni 1994; Ernest 1998; Hersh 1997; Van Kerkhove 2009; Van Kerkhove 
and Van Bendegem 2007; Mancosu 1996, 2011; Rotman 2000; Tymoczko 
1998). This tradition tries to explain what it is that mathematicians do 
when they do mathematics, and to shift the focus from “what it is” to 
“how it works.” This shift does not quite exclude the question of “what 
mathematics is”; rather, it asks “what it is in motion,” as it is being 
produced, understood, interpreted, and applied, rather than “what it is 
at rest,” when we try look at it as a complete, given object or stratum 
of reality/discourse.

When proponents of this school of philosophy of mathematics look 
at some historical or contemporary practices that are problematic ac-
cording to contemporary formal standards (for example, the use of in-
finitesimals or argument by diagrams), they do not try to reconstruct 
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them in more rigorous terms; rather they look at whatever it is that 
mathematicians do, even when what they do is not formally rigorous 
(I, personally, tend to focus on semiosis—how mathematical signs ac-
cumulate and change meanings).

This latter branch of the philosophy of mathematics is highly de-
scriptive and deeply entangled with the history and sociology of math-
ematics. Indeed, when we look at what mathematicians do, we find 
that their practice changes historically and is irreducibly embedded in 
social institutions. Due to the descriptive and concrete flavor of this 
kind of work, many see it as unworthy of the title “philosophical.” It 
often has to call itself “science studies” to survive outside the tradi-
tional disciplinary boundaries of philosophy, history, and sociology. In 
many ways, what I do with mathematical texts is more similar to what 
some researchers in literature departments do with literary texts than 
to what people in philosophy departments do (this obviously has to do 
with the fact that some branches of continental philosophy were ex-
iled to literature departments).

Nevertheless, I believe that this form of dealing with mathematics, 
regardless of whether we choose to call it philosophy or not, is genu-
inely important today. The approach that I’m promoting here can help 
a general academic readership reform some folk views of mathematics, 
and reposition mathematics as a humanely accessible endeavor, enjoy-
ing many unique characteristics, but still comparable to other branches 
of knowledge.

The approach advocated here is gaining more and more interest 
from philosophers, and is less alienating to mathematicians than main-
stream philosophical accounts. Hopefully, it can generate a discourse 
that will draw together philosophers, mathematicians, and nonspecial-
ists, so as to reintegrate the scattered sectarian debates on the present 
and future of mathematics into a lively and more pertinent cross-
cultural conversation.

The uncritical idolizing of mathematics as the best model of knowl-
edge, just like the opposite trend of disparaging mathematics as mind-
less drudgery, are both detrimental to the organization and evaluation 
of contemporary academic knowledge. Instead, mathematics should 
be appreciated and judged as one among many practices of shaping 
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knowledge. Understanding what this practice consists of would allow 
the academic community to give mathematics its due credit and place 
within and outside the academic system.

But before we go any further, in order to give a more concrete sense 
of what I am trying to deal with, let’s consider the following vignette.

A Vignette: Option Pricing and the Black-Scholes Formula

The point of the following vignette is to give a concrete example of 
how mathematics relates to its wider scientific and practical context. 
It will show that mathematics has force, and that its force applies even 
when actual mathematical claims do not quite work as descriptions of 
reality. The rest of this book will then try to philosophize about this 
force: where it comes from, how it works, and how it interacts with 
other forces.

The context of this vignette is option pricing. An “option” is the 
right (but not the obligation) to make a certain transaction at a certain 
cost at a certain time. For example, I could own the option to buy 100 
British pounds for 150 US dollars three months from today. If I own 
this option, and three months from today 100 pounds are worth more 
than 150 dollars, I’d be likely to use the option. If 100 pounds turn out 
to be worth less than 150 dollars, I will most probably simply discard it.

Such options could be used as insurance. The preceding option, for 
example, would insure me against a drop in the dollar-pound exchange 
rate, if I needed such insurance. It could also serve as a simple bet for 
financial gamblers. But what price should one put on this kind of in-
surance or bet?

There are two narratives to answer this question. The first says that 
until 1973, no one really knew how to price such options, and prices 
were determined by supply, demand, and guesswork. More precisely, 
there existed some reasoned means to price options, but they all in-
volved putting a price on the risk one was willing to take, which is a 
rather subjective issue.

In two papers published in 1973, Fischer Black and Myron Scholes, 
followed by Robert Merton, came up with a reasoned formula for pric-
ing options that did not require putting a price on risk. This feat was 
deemed so important that in 1997 Scholes and Merton were awarded 
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the Nobel Prize in economics for their formula (Black had died two 
years earlier). Indeed, “Black, Merton and Scholes thus laid the foun-
dation for the rapid growth of markets for derivatives in the last ten 
years”—at least according to the Royal Swedish Academy press release 
(1997).

But there’s another way to tell the story. This other way claims that 
options go back as far as antiquity, and option pricing has been stud-
ied as early as the seventeenth century. Option pricing formulas were 
established well before Black and Scholes, and so were various means 
to factor out putting a price on risk (based on something called put-
call parity rather than the Nobel-winning method of dynamic hedg-
ing, but we can’t go into details here). Moreover, according to this 
narrative, the Black-Scholes formula simply doesn’t work and isn’t 
used (Derman and Taleb 2005; Haug and Taleb 2011).

If we wanted to strike a compromise between the two narratives, 
we could say that the Black-Scholes model was a new and original 
addition to existing models, and that it works under suitable ideal con-
ditions, which are not always approximated by reality. But let’s try to 
be more specific.

The idea behind the Black-Scholes model is to reconstruct the op-
tion by a dynamic process of buying and selling the underlying assets 
(in our preceding example, pounds and dollars). It provides an initial 
cost and a recipe that tells you how to continuously buy and sell these 
dollars and pounds as their exchange rate fluctuates over time in order 
to guarantee that by the time of the transaction, the money one has 
accumulated together with the 150 dollars dictated by the option would 
be enough to buy 100 pounds. This recipe depends on some clever, 
deep, and elegant mathematics.

This recipe is also risk free and will necessarily work, provided some 
conditions hold. These conditions include, among others, the capacity 
to always instantaneously buy and sell as many pounds/dollars as I 
want and a specific probabilistic model for the behavior of the exchange 
rate (Brownian motion with a fixed and known future volatility, where 
volatility is a measure of the fluctuations of the exchange rate).

The preceding two conditions do not hold in reality. First, buying 
and selling is never really unlimited and instantaneous. Second, ex-
change rates do not adhere precisely to the specific probabilistic model. 
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But if we can buy and sell fast enough, and the Brownian model is a 
good enough approximation, the pricing formula should work well 
enough. Unfortunately, prices sometimes follow other probabilistic 
models (with some infinite moments), where the Black and Scholes 
formula may fail to be even approximately true. The latter flaw is some-
times cited as an explanation for some of the recent market crashes—
but this is a highly debated interpretation.

Another problem is that the future volatility (a measure of cost fluc-
tuations from now until the option expires) of whatever the option 
buys and sells has to be known for the model to work. One could rely 
on past volatility, but when comparing actual option prices and the 
Black-Scholes formula, this doesn’t quite work. The volatility rate that 
is required to fit the Black-Scholes formula to actual market option 
pricing is not simply the past volatility.

In fact, if one compares actual option prices to the Black-Scholes 
formula, and tries to calculate the volatility that would make them fit, 
it turns out that there’s no single volatility for a given commodity at a 
given time. The cost of wilder options (for selling or buying at a price 
far removed from the present price) reflects higher volatility than the 
more tame options. So something is clearly empirically wrong with 
the Black-Scholes model, which assumes a fixed (rather than stochas-
tic) future volatility for whatever the option deals with, regardless of 
the terms of the option.

So the Black-Scholes formula is nice in theory, but needn’t work in 
practice. Haug and Taleb (2011) even argue that practitioners simply 
don’t use it, and have simpler practical alternatives. They go as far as 
to say that the Black-Scholes formula is like “scientists lecturing birds 
on how to fly, and taking credit for their subsequent performance—
except that here it would be lecturing them the wrong way” (101, n. 13). 
So why did the formula deserve a Nobel prize?

Looking at some informal exchanges between practitioners, one 
can find some interesting answers. The discussion I quote from the 
online forum Quora was headed by the question “Is the Black-Scholes 
Formula Just Plain Wrong?” (2014). All practitioners agree that the 
formula is not used as such. Many of them don’t quite see it as an ap-
proximation either. But this does not mean that they think it is useless. 
One practitioner (John Hwang) writes:
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Where Black-Scholes really shines, however, is as a common language 
between options traders. It’s the oldest, simplest, and the most intuitive 
option pricing model around. Every option trader understands it, and it is 
easy to calculate, so it makes sense to communicate implied volatility [the 
volatility that would make the formula fit the actual price] in terms of 
Black-Scholes. . . . As a proof, the exchanges disseminate [Black-Scholes] 
implied volatility in addition to price data.

Another practitioner (Rohit Gupta) adds that this “is done because 
traders have better intuition in terms of volatilities instead of quoting 
various prices.” In the same vein, yet another practitioner (Joseph 
Wang) added:

One other way of looking at this is that Black-Scholes provides something 
of a baseline that lets you compare the real world to a nonexistent ideal 
world. . . . Since we don’t live in an ideal world, the numbers are different, 
but the Black-Scholes framework tells us *how different* the real world is 
from the idealized world.

So the model earned its renown by providing a common language that 
practitioners understand well, and allowing them to understand ac-
tual contingent circumstances in relation to a sturdy ideal.

Now recall that practitioners extrapolate the implied volatility by 
comparing the Black-Scholes formula to actual prices, rather than plug 
a given volatility into the formula to get a price. This may sound like 
data fitting. Indeed, one practitioner (Ron Ginn) states that “if the 
common denominator of the crowd’s opinion is more or less Black-
Scholes . . . smells like a self fulfilling prophecy could materialize,” or, 
put in a more elaborate manner (Luca Parlamento):

I just want to add that CBOE [Chicago Board Options Exchange] in early 
’70 was looking to market a new product: something called “options.” 
Their issue was that how you can market something that no one can eval-
uate? You can’t! You need a model that helps people exchange stuff, turn[s] 
out that the BS formula . . . did the job. You have a way to make people 
easily agree on prices, create a liquid market and . . . “why not” generate 
commissions.

The tone here is more sinister: the formula is useful because it’s there, 
because it’s a reference point that allows a market to grow around it.
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But why did this specific formula attract the market, and become 
a common reference point, possibly even a self-fulfilling prophecy? 
Why not any of the other older or contemporary pricing practices, 
which are no worse? Why was this specific pricing model deemed 
Nobel worthy?

The answer, I believe, lies in the mathematics. The formula depends 
on a sound and elegant argument. The mathematics it uses is sophisti-
cated, and enjoys a record of good service in physics, which imparts a 
halo of scientific prestige. Moreover, it is expressed in the language of 
an expressive mathematical domain that makes sense to practitioners 
(and, of course, it also came at the right time).

This is the force of mathematics. It’s a language that the practi-
tioners of the relevant niches understand and value. It feels well 
founded and at least ideally true. If it is sophisticated and comes with 
a good track record in other scientific contexts, it is assumed to be 
deep and somehow true. All this helps build rich practical networks 
around mathematical ideas, even when these ideas do not reflect em-
pirical reality very well.

This book is about the force of mathematics, its origins and its un-
folding. We all have some basic ideas about how and why mathemat-
ics works, and to what extent it is true or useful. But if we want to 
understand the surprising force of mathematics demonstrated in this 
vignette, we need to engage in a more careful analysis of mathemati-
cal practice.

Outline of This Book

The purpose of this book is to investigate what this force of mathemat-
ics builds on, and how it works in practice. To do that, I will discuss 
mathematics not only from the point of view of applications but also 
from the point of view of its production.

Chapter 1 introduces some histories of canonized philosophies of 
mathematics. These historical narratives are structured so as to high-
light not the specific philosophical questions of the canon, but some 
overarching concerns that philosophical debates reflect. This serves to 
creatively rearrange the canon of the philosophy of mathematics and 
introduce some of the problems that this book will engage.
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This articulation of overarching problems is reflected in chapter 2 
by a real historical case study. This chapter attempts to flesh out the 
preceding chapter’s problems by describing economical-mathematical 
practice with algebraic signs and subtracted numbers in the abbaco 
tradition of the Italian late Middle Ages and Renaissance. This chapter 
follows the vein of Wagner (2010b, 2010c), but it is thoroughly reorga-
nized, and includes new material.

This leads us to chapter 3: a general outline of a philosophy of math-
ematical practice that forms the theoretical core of this book (a philo-
sophically inclined reader who wants to read just one chapter of this 
book should probably go directly there). This chapter reflects on the 
function of mathematical statements (following Wittgenstein), their 
epistemological position, mathematical consensus, and mathematical 
interpretation and semiosis. The various positions expressed in the 
philosophical survey of the first chapter and the historical case study 
of the second are rearticulated as real constraints that apply to math-
ematical practice. Different mathematical cultures negotiate these con-
straints in different ways, and no single constraint serves as a final 
foundation. The chapter then proceeds to engage more mainstream 
notions of reality and truth of mathematical entities and statements 
(following Grosholz and Maddy), and suggests how a takeoff on Put-
nam’s notion of relevance might relativize them. The fourth section of 
this chapter includes material revised from Wagner (2010a).

Chapter 4 attempts to reflect some of the ideas of the previous chap-
ter with concrete case studies, focusing on problems of mathematical 
semiosis: how mathematical signs obtain and change their senses. The 
case studies are abridged and simplified versions of Wagner (2009b, 
2009c), dealing with generating functions and the stable marriage prob-
lem in combinatorics. This opens up questions of how meaning is 
transferred within and across mathematical contexts—a question that 
belongs to the study of mathematical cognition.

Chapter 5 will articulate the preceding cognitive concerns in a more 
systematic manner. In order to introduce the notion of embodied math-
ematical cognition, I will first review the neuro-cognitive debate on the 
mental representation of numbers (focusing on Dehaene and Walsh). I 
will then present the cognitive theory of mathematical metaphor and 
suggest a rearticulation, based on Wagner (2013). This theory will be 
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further enriched by an engagement with Walter Freeman’s theory of 
meaning. We will conclude with an appropriation of Deleuze’s Logic of 
Sensation to the context of mathematical practice, drawing on material 
from Wagner (2009a).

Chapter 6 will flesh out the cognitive problematic from the previ-
ous chapter with case studies of medieval and early modern geometric 
algebra adapted from Wagner (2013) and of the history of notions of 
infinity adapted from Wagner (2012). These case studies will demon-
strate the limitations of the cognitive theory of mathematical meta-
phor in accounting for the formation of actual historical mathematical 
life worlds.

Chapter 7 will complement the discussion by thinking of mathe-
matics not only as subject to constraints but also as feeding back into 
the reality that shapes it. A brief narrative will follow Fichte, Schell-
ing, and Hermann Cohen to derive inspiration for rethinking the real-
ity of ideas, and suggest how mathematics reforms the world where it 
lives. These philosophical approaches will lead us to offer a solution to 
Mark Steiner’s formulation of Wigner’s problem of the “unreason-
able” applicability of mathematics to the natural sciences (or at least 
a reduction of the problem to a more containable intra-mathematical 
setting), elaborating an argument briefly outlined in Wagner (2012).

The book should be accessible to readers with a general interest in 
philosophy and mathematics. Some of the case studies and examples 
may require the equivalent of basic undergraduate calculus or linear 
algebra courses. Only a few scattered examples require higher mathe-
matical training, and they can be skipped. The modular structure of 
the book should help readers avoid sections that are too theoretical 
or too technical for their taste.

I include various historic and contemporary case studies, some of 
which may appear rather strange to contemporary readers. My pur-
pose is to recall that mathematics was and can be different from the 
mathematics that we are used to today. This helps us gain a wider view 
of the possibilities and contingencies of mathematical practice that 
contemporary imagination tends to suppress. In turn, this will provide 
us with a better, more complete understanding of the landscape that 
the title “mathematics” subsumes.
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C H A P T E R  1

Histories of Philosophies of Mathematics

This chapter sets this book against the background of canonical 
philosophies of mathematics. It will present several historical narra-
tives that follow some major trends in the philosophy of mathematics. 
All these narratives are going to be highly selective and superficial. I 
allow myself this bird’s-eye view precisely because these histories are 
presented in parallel, emphasizing the partiality of each particular nar-
rative. But this does not mean that together they presume to exhaust 
the historico-philosophical landscape. There’s much more that can be 
added to these stories, and many ways in which they can be retold.

I should emphasize that these histories do not presume to explain 
or analyze the philosophical positions that they bring up. The point is 
rather to highlight some issues at stake in the debate among philoso-
phers—issues that were not always explicitly highlighted by those 
philosophers. I will therefore not go into the details of each philosoph-
ical position or even provide a decent survey of their arguments. Doing 
that would force me to deviate too far from my main argument and 
reproduce some well-known discussions that are covered in many 
other introductory works (among the most recent are Bostock 2009; 
Celluci 2007; Friend 2007; George and Velleman 2001; Hacking 2014; 
Murawski 2010; Shapiro 2005; and the Stanford and Routledge online 
encyclopedias of philosophy). Since I only want to thread together 
the various debates to make salient some questions that underlie 
philosophical debates, many deep philosophical points that were 
very important to the various quoted philosophers will be glossed 
over very quickly and superficially, so as to pick up the problems that 
are important for the argument of this book.
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More specifically, instead of philosophical questions such as “Are 
mathematical objects real?,” “Is mathematics reducible to logic, or in-
tuitions, or axioms?,” or “Is mathematics a priori?,” I will narrate the 
history of some philosophical discussions as revolving around meta-
philosophical tensions: tensions between natural order and conceptual 
freedom; between mathematics as originally constitutive versus re-
ducible to reason and/or nature; between reining in conceptual mon-
sters and attempting to let them roam free; and between different 
ways to distribute authority over mathematical norms and standards.

History 1: On What There Is, Which Is a Tension between Natural 
Order and Conceptual Freedom

Our first narrative of philosophies of mathematics will start from 
W. V. Quine’s (1948) “On What There Is.” This paper raises the question 
of whether mathematical entities really exist or are figments of the 
imagination. This question relates to a common sentiment that says 
that mathematics is good because it provides good descriptions or pre-
dictions of empirical or idealized realities.

Quine’s paper draws an analogy between, on the one hand, scho-
lastic realism, conceptualism, and nominalism and, on the other hand, 
modern logicism, intuitionism, and formalism respectively (we’re going 
to introduce the former and latter in a few paragraphs). In order to 
tease out the tension between natural order and conceptual freedom 
in the context of mathematics, we’ll need to take a quick (and super
ficial) look at these schools of thought.

According to Quine’s analogy, medieval realists and twentieth-
century logicists were committed to the existence of all kinds of ab-
stract objects; medieval conceptualists and modern intuitionists were 
committed only to those that could be admitted via a restricted mental 
construction; and nominalists and formalists were committed only to 
names and inscribed marks, without requiring objects to which these 
names and marks would refer beyond specific examples.

Quine’s essay marks a pivotal moment in the history of twentieth-
century philosophy of mathematics—so much so that Hilary Putnam 
stated that in the analytic tradition “[i]t was Quine who single-handedly 
made Ontology a respectable subject” (2004, 78–79). Quine’s historical 
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narrative came up at a time when logicism, intuitionism, and formal-
ism have exhausted much of their drive as formative philosophical 
projects, and became absorbed into more technical work in logic. His 
pivotal statement set the scene for the contemporary realist-nominalist 
discussion that would become a leading concern in contemporary phi-
losophy of mathematics.

To see what Quine’s historiography entails, let’s pause briefly to 
consider one dimension of the scholastic debate. But note that reduc-
ing a debate that spanned hundreds of years necessarily verges on a 
caricature and involves gross overgeneralizations. A properly detailed 
historical account of the fluctuating debate concerning universals in 
scholastic thought is provided by de Libera (1996).

Scholastic realism involved an elaborate scheme of entities that me-
diated human perception and divine knowledge, exceeding the bounds 
of time and space. It depended on a complex division of labor between 
the objects, the senses, the passive and active human intellect (which 
mediate between the senses and mental concepts), and divine illumi-
nation (that provides nonsensory input and direction). These elements 
combined to give rise to subjective and objective concepts (those con-
structed by a single individual and those necessarily shared by all) and 
to individualized and absolute essences (the essence of an object as 
understood by an individual and as it really is from a divine point of 
view). Universal concepts in general (for example, good, blue), and 
mathematical concepts in particular (numbers, geometrical forms), were 
to be abstracted from the sensed world by human intellects and divine 
illumination, and held together objectively across different minds and 
different individual instances by their common essences. This archi-
tecture forced the work of God and man into a rational Aristotelian 
hierarchical and purposeful frame integrated with a Platonic reifica-
tion of abstract concepts as independent and eternal.

Nominalists reacted against this elaborate divinely rational world 
by doing away with many of the pillars that held the realist conceptual 
architecture together. Instead of abstractions of the essences from 
similar individuals, concepts or common names became just means of 
grouping individuals together. No universal concepts or essences held 
these different names or groups together—they were individual or col-
lective engagements with the world. Divine will was no longer tied 
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down to the heavy ontological burden of Aristotelian hierarchical and 
purposeful classifications and to Platonic eternal forms. The link be-
tween man and God depended less on reason and more on faith. Fo-
cusing on the cultural impact of this position (specifically, Ockham’s 
fourteenth-century position), Sheila Delany suggests that

Since God is bound by neither natural law nor his own promises, the uni-
verse becomes profoundly contingent and, in an absolute sense, unpredict-
able. Neither nature, society, nor the human mind are necessarily perma-
nent or static in their structure; all are open to change and plurality, none 
can be fully understood by reference to an abstract a priori scheme. (Delany 
1990, 48)

Divine and human wills became much more autonomous with respect 
to the nature of the created world. The cost, however, was that philo-
sophical guarantees of communication, correct representation of the 
world, and a general sense of purpose could be lost.

Fitting this division with the early twentieth-century foundational 
trio of logicism, intuitionism, and formalism is tricky. First one has 
to bring in conceptualism to complete the scholastic duo into a triad 
(since the scholastic division was never as clearly defined as contem-
porary presentations pretend it to be, some of the more moderate 
forms of nominalism, which allow the mind to abstract some essence-
ersatz from individuals, are termed “conceptualist”). Even then, if we 
consider the big picture, the early twentieth-century foundational po-
sitions don’t have too much in common with the scholastic debate.

But Quine focused on quantification as a form of ontological com-
mitment, not on the entire scholastic construction. Quantification is 
our use of the term “all . . . ” or “there are . . . ” in our scientific language. 
For Quine, using these terms meant that we acknowledge the existence 
of the entities that they refer to. So if we say “all numbers are . . . ,” we 
commit to the existence of numbers. Now, if we restrict our attention 
to quantification alone, Quine’s analogy works to an extent. Let’s re-
view this analogy.

Frege’s and Russell’s “logicism” advocated the reduction of mathe-
matics to logic and pure reason. This seemed to be a tenable project, 
because by the end of the nineteenth century logic had become much 
more rich and expressive than it had ever been before. Their attempt 
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was to present numbers and other mathematical entities as sets sub-
ject to the logical laws of some basic set theory. Logicists, as com-
monly interpreted, do quantify over abstract terms such as “sets,” 
“numbers,” and “geometrical shapes,” as did scholastic realists (assum-
ing we can retroject the term “quantify” a few hundred years into the 
past), and considered them to be real existing entities. As the early 
Bertrand Russell put it (and later retracted):

All knowledge must be recognition, on pain of being mere delusion; Arith-
metic must be discovered in just the same way in which Columbus discov-
ered the West Indies, and we no more created numbers than he created the 
Indians. The number 2 is not purely mental, but is an entity which may be 
thought of. Whatever can be thought of has being, and its being is a pre-
condition, not a result, of its being thought of, since it certainly does not 
exist in the thought which thinks of it. (Russell 1938, ch. 51, §427)

Brouwer’s “intuitionism” (preceded in some ways by such figures as 
Poincaré and Kronecker) questioned any mathematics that could not 
be finitely constructed starting with counting a sequence of moments 
(in a Kant-like framework of temporality, to be discussed in the next 
section). In Brouwer’s view, actual infinities could not be contained by 
such constructions and were therefore rejected.

Nonconstructive proofs were suspect as well. For instance, it’s 
clear that either √•2√•2 is an example of two irrational numbers yielding 
a rational power, or, if their power turns out to be irrational, then 
(√•2√•2)√•2 = (√•2)√•2×√•2 = (√•2)2 = 2 is an example of two irrational numbers 
yielding a rational power. But as long as we cannot decide which al-
ternative holds, we have failed to construct a rational power of two 
irrational numbers, and so radical intuitionists would say that we have 
not proved the existence of two irrationals yielding a rational power. 
This rejection of classical concepts and arguments required a thor-
ough review of a lot of classical mathematics.

Intuitionists are harder to fit into Quine’s analogy. They quantify 
over mental constructions based on the elementary intuition of tem-
poral succession (counting the moments 1, 2, 3, . . . ), not over mere com-
mon (nominalist) names or over abstractions of fully fledged (realist) 
essences. One could therefore say that intuitionist and conceptualist 
objects exist in the mind. But what “mind” means, and how things 
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come to exist in the mind works rather differently in the scholastic 
and intuitionist systems. The conceptualist scholastic mind collects in-
dividuals under concepts by analogies. The intuitionist mind constructs 
on its own by following the basic internal experience of the advance 
of time.

Hilbert’s “formalism” tried to see mathematics as analyzing which 
combinations of signs can be obtained when following strict syntactic 
rules, without pretending to anchor these signs to any reference or 
meaning (think for example about algebraic equations with rules for 
simplifying them, but without deciding what kind of numbers the 
unknowns may stand for, or if they stand for numbers at all). But in 
Hilbert’s system, such formal languages of signs and rules were to be 
analyzed and compared inside some system (a meta-language), and 
Hilbert determined this system to be the elementary core of finite 
arithmetic subject to constructive and logical restrictions that would 
be legitimate in the eyes of all philosophical parties involved.

Formalists make things more complicated for Quine’s analogy, be-
cause of their double articulation of mathematical discourse into the 
language of formal proofs (meaningless signs following syntactic rules) 
and the meta-language that applies finite, constructive reasoning to 
the first-level languages.

Indeed, the formalist meta-language quantifies over numbers (it 
counts signs and makes claims that depend on the length of bits of 
text), but Poincaré and Hilbert were at odds as to whether the num-
bers of the meta-language were mere collective names of empirical 
marks on paper or full-blown mathematical mental constructions, es-
pecially where induction was used in the meta-language to make gen-
eral statements about proofs (Ewald 1996, 1021–51).

As for the level of formal languages, in which mathematical proofs 
were written, according to the Hilbertian view these languages were 
collections of marks and rules that may discard any denotation. This 
is his famous statement that “point,” “line,” and “plane” in Euclidean 
geometry may as well be replaced by “tables,” “chairs,” and “beer mugs”; 
what matters is only the rules of the language (Euclidean axioms and 
postulates, as well as those that Euclid used implicitly), and we do not 
decide in advance what the Euclidean terms designate. (Hilbert actu-
ally constructed different kinds of geometry by offering different des-
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ignations to the same Euclidean terms, so as to make them obey differ-
ent sets of axioms.) The marks of formal language are therefore not 
names that group individuals together, as we would expect following 
Quine’s analogy between formalists and nominalists.

So the analogy between the scholastic and early twentieth-century 
trichotomies is shaky at best. To find a more adequate modern version 
of scholastic nominalism, we should probably try John Stuart Mill, 
who stated that

All numbers must be numbers of something: there are no such things as 
numbers in the abstract. Ten must mean ten bodies, or ten sounds, or ten 
beatings of the pulse. But though numbers must be numbers of something, 
they may be numbers of anything. (Mill 1843, book II, ch. 6, §2)

This means that when we say that “2 + 3 = 5,” we make an empirical 
statement, but one that is collectively true for apples, chairs, and so on. 
It seems therefore that when Mill quantifies over numbers, he quanti-
fies, like scholastic nominalists and like Hilbert in his meta-language 
treatment of numbers, over collections of individual instances.

If we proceed in time, and try to carry Quine’s analogy over to 
contemporary realists and nominalists, we might find more substan-
tial analogies. These analogies are not restricted to a concern with 
quantification. They even go beyond the borrowing of scholastic terms 
for realism and nominalism such as in rebus (existing in empirical 
things) and ante rem (existing a priori, independently of empirical 
things; see Reck and Price 2000 for details). I believe that the most 
substantial analogy between scholastics and modern philosophers of 
mathematics concerns the commitment to natural order versus con-
ceptual freedom.

The following paragraph from Burgess and Rosen (1997, 241)—a crit-
ical study of contemporary nominalism in mathematics—is telling:

the most fashionable figures in the history and sociology and anthropol-
ogy of science deny not only that there is a ready-made theory of the 
world, but even there is any ready-made world. They maintain not just 
that theories about life and matter and number are constructs of human 
history and society and culture, but that number and matter and life them-
selves are such constructs [. . . and] that mathematical and physical and 
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biological facts, being created by us when we create mathematical and 
physical and biological theories, cannot impose any prior constraint on 
how we go about shaping those theories, leaving only constraints from 
our side—assumed to be social and political and economic—rather than the 
world’s side.

The drums of the Science Wars can be clearly heard beating in the 
background, and contemporary forms of realism still seem concerned 
with the risk of relativism costing us our grip of reality. They some-
times even carry religious overtones. Mark Steiner’s view (1998) is that 
some sort of anthropomorphic design is required to make the universe 
so highly accessible to human mathematics, and that if we disagree, 
then “[n]ominalism, like atheism, and for similar reasons, is a philo-
sophical position that recommends itself to many modern philoso-
phers” (2001, 73). Putnam’s Ethics without Ontology (2004) is worried 
that losing grip of reality in the context of hard sciences is related to a 
dangerous descent into ethical relativity.

As in the scholastic realism debate, what is at stake is not only onto-
logical commitments expressed by quantification but also the binding 
of human and divine reason to the reality of (Aristotelian or modern) 
science. But can we also fit into this analogy the aspect of medieval 
nominalism that set to liberate the human mind and will from some 
preordained conception of the created world?

Hellman (1998) jokingly reads Burgess and Rosen as accusing 
nominalists of Maoism—that is, of attempting to instigate a cultural 
revolution in mathematics. This revolution would seek to replace the 
mathematical language of science by other languages, which do not 
quantify over mathematical entities. Hartry Field (1980) is a paradig-
matic example here. First, Field generates an alternative physical lan-
guage that involves no mathematical entities (based on spatial loca-
tions and their observable qualitative relations). Then he shows that 
adding mathematics as a representational aid for this strictly physical 
language is “conservative”—that is, no conclusions drawn from the 
mathematical expansion of the language exceed those that can be 
drawn from the physical language itself. The advantage of the mathe-
matical extensions is simply that it facilitates such derivations.
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This so-called hard-road nominalism (I leave easy-road nominalism 
aside for now) may be read as a hygienic project: remove all mathe-
matical language from physics, and show that letting it back in won’t 
send us jumping to unwarranted conclusions. This project ensures our 
grip on reality by setting aside as contingent and harmless any math-
ematical shortcut involving entities that are not tangibly real. This kind 
of project is accepted by Burgess and Rosen, as well as Quine, as a 
means for figuring out what’s necessary and what’s contingent in the 
way we theorize the world. For Burgess and Rosen this is “a way of 
imaging what the science of alien intelligences might be like” (1997, 
243), whereas Quine invited us to “see how, or to what degree, natural 
science may be rendered independent of platonistic [here, realist] 
mathematics; but let us also pursue mathematics and delve into its 
platonistic foundations” (1948, 38).

Given this reading of contemporary nominalism, we can go back to 
the first half of the twentieth century in order to bind the new nomi-
nalist logic of the fourteenth century and contemporary nominalist 
philosophy of mathematics. Our link is logical positivism, a project 
that sought to separate empirical claims from analytic claims (the lat-
ter being true by definitions and logical consequence). Mathematical 
statements were thus split into two kinds: to observe by counting that 
3 apples and 2 pears make 5 fruit was an empirical observation; to 
claim that 3 + 2 = 5 based on the definition of number and the associ-
ated rules was a purely analytic mathematical claim. Carnap’s toler-
ance principle demanded that all analytic approaches be given equal 
opportunity to advance science. Those that work well with empirical 
science are to be retained, and those that do not can be discarded.

Hilbert’s formalism can also be read in a similar vein. Finitary con-
structive reasoning (answering questions such as “Does this formula 
follow from that according to those given rules?”), which reigns over 
manipulations of marks on paper, is a physically embedded activity, 
and is therefore part of the real world (think also of computer-based 
verification—which discards the purported transcendence of human 
reasoning). Any mathematical language that expands this logic and is 
expressible in finite strings following finitely verifiable rules of deriva-
tion would be welcome into formalist mathematics regardless of what 
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(and if) it purported to represent. Hilbert’s only qualification was that 
the new addition wouldn’t lead us to false conclusions about the fi-
nite constructive arithmetic we had started with. Hilbert hoped that 
this form of conservatism would be provable by means of the meta-
mathematical finitary constructive logic.

Like medieval nominalism, these forms of modern mathematical 
nominalism (hard road, logical positivism, formalism) promote con-
ceptual and linguistic freedom while drawing a clear line dividing this 
freedom from hard physical fact. Contemporary nominalism, however, 
cannot rely on medieval faith, and tries to prove that this freedom to 
reason does not generate false claims concerning the actual world. 
But none of these contemporary forms of nominalism is generally 
accepted as a successful endeavor. And so, many philosophers still 
believe that only a holist realism where all terms refer to existing 
(physical or ideal) entities can protect us from the vagaries of errant 
schoolmen and fashionable sociologists.

But recall here the mathematical vignette from the introduction. 
We saw that the Black-Scholes formula is of value even where it strays 
from the empirical path, even when it allows us to draw empirically 
false conclusions or has no clear empirical counterpart. This does not, 
however, make the formula arbitrary or meaningless—it is useful pre-
cisely because practitioners successfully endow it with meaning and 
make it relevant for the actual world of trading.

History 2: The Kantian Matrix, Which Grants Mathematics a 
Constitutive Intermediary Epistemological Position

Following the echoes of nominalist scholastic thought, French lumi-
naries pointed to a gap between real mathematics and its abstract 
counterpart. Condillac, for example, found that numbers began from 
concrete representations of objects by fingers and so on, but then, as 
numbers were abstracted, they lost their footing in objects and were 
perceived “in the names that have become the signs of the numbers” 
(Condillac, Langue des Calculs, quoted in Schubring 2005, 260). Others, 
like d’Alembert, insisted that the gap between real and nominal math-
ematics had to be bridgeable:
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[W]e arrive through the continual generalization of our ideas at the prin-
cipal part of mathematics. . . . [But then mathematics] retraces its steps, 
reconstitutes anew its perceptions themselves, and, little by little and by 
degrees, produces from them the concrete beings that are the immediate 
and direct objects of our sensations. (d’Alembert 1995, 20–21)

Kant’s crucial contribution to the philosophy of mathematics (argu-
ing not directly with French luminaries, but with a tradition going 
back to the rationalist Descartes and empiricist Hume) was to revise 
his contemporaries’ conception of the gap between empiricist and ra-
tionalist views by placing mathematics in an intermediary position. 
This maneuver was organized by means of the Kantian matrix.

This matrix classifies judgments or assertions (there’s a distinction 
here, but I won’t pick on this nit) according to two axes: analytic/
synthetic and a priori/a posteriori.

•	 An assertion is “analytic” if the predicate (or what is claimed) is part of 
the concept-subject (or that of which it is claimed). That a triangle has 
three sides is analytic, because having three sides is contained in the 
definition of a triangle.

•	 An assertion is “synthetic” if the predicate adds something to what the 
concept of the subject already contains. To claim that some triangle has 
a side whose length is 10 inches is synthetic, because it does not follow 
from the concept of triangle.

(There’s a problem with what it means for the predicate to be prop-
erly included in a concept. Does the predicate have to be literally in-
cluded, or can it be derivable from the concept by logical reasoning? 
For Kant, this wasn’t much of an issue, because what was considered as 
logical derivation at the time, based on Aristotelian syllogisms, had a 
very limited reach. But as the logic of functions, relations, and classes 
evolved, the issue became more pertinent.)

•	 An assertion is “a priori” if it requires no empirical experience to be 
made. For example, to know that anything is identical with itself, at 
least according to Kant, no experience is required.

•	 An assertion is “a posteriori” if it is based on empirical experience. To 
assert that the sun is shining right now depends on my observation of 
the sky, or some other, less direct observation.
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One might expect the axes of a priori/a posteriori and analytic/
synthetic to overlap. Indeed, if an assertion does not depend on expe-
rience, then we’d expect its truth to follow from definitions and logic, 
and vice versa. But Kant finds exceptions. While he thinks that ana-
lytic a posteriori assertions are impossible (if the predicate is included 
in the concept, there’s no need to resort to experience), he finds that 
synthetic a priori assertions are typical of mathematics.

For example, consider the assertion that the sum of angles in a tri-
angle is two right angles. The Euclidean proof requires a construction: 
draw a parallel to one of the sides through the opposite vertex. This 
construction is not part of the concept of a triangle, but is necessary to 
establish the assertion. The assertion that the sum of angles is two right 
angles therefore exceeds the concept of a triangle. It is synthetic.

On the other hand, no external empirical experience is required for 
the Euclidean proof. One can run through the proof with one’s eyes 
closed in a sensory deprivation tank. This synthetic assertion is there-
fore a priori. The synthetic a priori is thus a realm of knowledge that 
does not depend on external observation, but is still richer than pure 
logic. It includes the pure forms of time and space on the surface of 
which mathematical reasoning takes place. The a priori experience 
of this realm is termed by Kant “pure intuition” (and has nothing to do 
with the use of the term “intuition” as some sort of vague premonition—
this is rather the nonsensory intuition in which intuitionists carry out 
their constructions).

Much of the subsequent philosophy of mathematics can be read as 
a reaction to this division of labor between reason’s a priori analytic 
logic, the senses’ empirical synthetic a posteriori observations, and 
Kant’s synthetic a priori middle ground. The juncture here concerns 
the place of mathematics in the greater order of knowledge: is it a 
distinguished, necessary, and formative middle ground, or is it reduc-
ible to reason or empirical observation?

A first step in the evolution of post-Kantian ideas was to ask 
whether, even if we accept Kant’s architecture, all mathematics is syn-
thetic a priori. Even Kant’s most faithful immediate successors pointed 
out that some mathematics was nevertheless analytic. I’m not refer-
ring here to such obviously analytic assertions as “a triangle is a trian-
gle” or “a triangle has three sides,” but to claims that involve infinities 

www.TechnicalBooksPdf.com



 Histories of Philosophies  •  25

and infinitesimals. Our source here is the Kantian philosopher Jakob 
Friedrich Fries (1773–1843).

According to Fries, there are two kinds of infinities. The first fits 
into the Kantian synthetic a priori. It is the infinite as “indefinite.” It 
follows Kant’s solution to the antinomies of pure reason: our synthetic 
a priori experience of space shows us that we can always go farther in 
any direction, but we cannot thereby experience or deduce any com-
plete infinity of the world. The process of indefinite increase or dimi-
nution is therefore the synthetic a priori version of infinity, and is 
admissible in a Kantian mathematical worldview. It is expressed, for 
example, in convergent infinite series and notions of limit.

But reason itself can come up with a concept of complete infinities 
or infinitesimals, as witnessed by the many mathematicians who ap-
pealed to such infinities before Kant. Now Kant argued that thoughts 
without content (that is, devoid of any pure or empirical experience) 
are empty. The concept may be had, but it will not have any real coun-
terpart and will have no scientific purport.

Fries, influenced by the mathematician Carl Friedrich Hindenburg, 
sought to find a place for reason’s complete infinities. So he distin-
guished between syntactic operations (combinations of signs that fol-
low arbitrary rules) and arithmetic operations (operations that deal 
with magnitudes in the framework of Kant’s synthetic a priori). The 
former depend on combinatorial order, and the latter on the classical 
axioms of magnitudes and ratios. The syntactic approach is therefore 
independent of the arithmetic one (Fries 1822, 68).

Due to the Kantian exclusion of complete infinity from intuition, 
operations with complete infinities and infinitesimals were to be con-
sidered as strictly syntactic (Fries 1822, 280, 294). Mathematical oper-
ations with infinities, like those resorted to by such mathematicians as 
Wallis, Euler, and Fontenelle (Boyer 1959), had nothing to do with em-
pirical experience, and so came down to games of reason. Any empir-
ically viable claim involving complete infinities in the spatio-temporal 
world of measurable magnitudes would have to be reduced to expres-
sions of indefinite increase or decrease.

The important point here is that one admits a form of mathematics 
that is analytic and a priori, depending on empty reason—concepts 
that lack a corresponding pure or empirical intuition beyond their 
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articulations in signs. According to Fries, these are figments of rea-
son’s creative imagination. Just because they’re analytic and a priori, 
it doesn’t follow that they are real.

Now this approach was not satisfactory for leading nineteenth-
century philosophers. Leaving reason to hover irrelevantly in the back-
ground did not seem appropriate. Much of German idealism was about 
identifying reason with being (Schelling; see chapter 7) or even claim-
ing that it forms being according to a teleological plan (Hegel).

This trend did not die away with German idealism, but did assume 
less extravagant forms. By the time of Gottlob Frege (1848–1925), and 
partly due to his own efforts, logic could be made rich enough to de-
scribe a wide variety of arithmetic structures and derivations, and so 
Frege attempted to draw arithmetic (if not all of mathematics) back 
into the analytic a priori. But this was not to suggest that mathematics 
was a figment of imagination or a game of reason. For Frege, mathe-
matics was real:

The thought we have expressed in the Pythagorean theorem is timelessly 
true, true independently of whether anyone takes it to be true. It needs no 
owner. It is not true only from the time when it is discovered; just as a 
planet, even before anyone saw it, was in interaction with other planets. 
(Frege 1984, 363)

I won’t get into the intricate discussion over the precise nature of 
Frege’s supposed realism. The point is that Frege did not allow math-
ematics to be tied to any form of experience, not even a necessary 
foundation for all human experience such as Kant’s synthetic a priori. 
Logicism wanted to push mathematics back into the realm of the ana-
lytic a priori, without thereby giving up its status as objective truth 
about the world.

Another branch in the evolution of Kantian ideas is intuitionism, 
referring to Kant’s pure intuition, the experience of space and time that 
precedes empirical observation. Mathematicians such as Poincaré and 
Brouwer sought to retain mathematics’ status as a distinguished “in 
between.” For Brouwer this meant that reason’s complete infinities had 
to be given up. The indefinite sequence of integers is to be kept, but 
higher infinities were to be excluded, even at the cost of a wholesale 
revision of the mathematics of the continuum of real numbers.
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Around the same time, Hermann Cohen and Ernst Cassirer pre-
ferred to follow Kant by adhering to something like the synthetic a 
priori, but chose to enrich it, rather than give up higher infinitary 
analysis. To maintain mathematics’ distinguished intermediary posi-
tion as well as its richness, Cohen (1883; see chapter 7) considered the 
infinitesimal as the distinguished synthesizing foundation of mathe-
matics; Cassirer (1910) opted for the modern notions of function and 
relation, rendering the focus on mathematical “objects” obsolete. But 
the most interesting innovation of Cohen and Cassirer is the historicity 
and contingency they introduced into the synthesizing middle ground. 
This middle ground is no longer a given foundation of human knowl-
edge to be deduced by solving apparent paradoxes. What serves as a 
synthetic a priori background to our reasoning is a historically and 
culturally formed intermediary between reason and reality—one pos-
sible manner to found human worldviews.

Hilbert’s formalism, on the other hand, seems most faithful to Fries’s 
articulation of arithmetic versus syntax. Hilbert’s meta-language is a 
minimal mathematics that purports to respect the demands of intu-
itionists, logicists, and those who want to reduce mathematics to a 
nominalist abstraction from empirical finite counting. (I don’t think 
he was too interested in respecting the Kantian synthetic a priori, as 
he was keen on starting from a foundation that no one in his philo-
sophical environment would question.) The rest of mathematics was 
not to be rejected; it was to be upheld as purely syntactic. However, to 
make sure that the purely syntactic mathematical elaborations that we 
introduce into our reasoning do not shake the consensual foundation, 
consistency must be guaranteed, and it must be proven by the means 
available within this consensual core. Gödel’s second incompleteness 
theorem shattered this hope.

To tie things to the previous section, note that logical positivism 
sought to do away with the distinguished in-between position of math-
ematics. It allowed only empirical synthetic a posteriori assertions, 
and logical analytic a priori ones. The cost was, as explained earlier, to 
split mathematical claims into two aspects: an empirical descriptive 
aspect and a formal syntactic one. Following on this tradition, con-
temporary realism and nominalism don’t settle for this dualism; they 
demand that we choose sides.
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Our first history brought up the tension between an understanding 
of mathematics as committed to natural order and its view as concep-
tually free. The current history shows a tension between placing 
mathematics in a distinguished intermediary foundational position 
versus its absorption into the naturally ordered world and/or into free 
thought. The underlying question is whether mathematics is so special 
and foundational that it deserves its own ontologico-epistemological 
domain.

Going back to our vignette, we saw that the Black-Scholes formula 
is not strictly descriptive, nor is it an arbitrary, free construct. How-
ever, it’s hardly describable as belonging to a distinguished a priori 
foundation or necessary truth. An account of mathematical practice 
must find a different articulation in order to explain its force.

History 3: Monster Barring, Monster Taming, and Living with 
Mathematical Monsters

Our starting point here is Aristotle’s prohibition against metabasis eis 
allo genos—the transfer of reasoning between different kinds of enti-
ties. “[W]e cannot in demonstrating pass from one genus to another. 
We cannot, for instance, prove geometrical truths by arithmetic” (Pos-
terior Analytics I.7 75a38–39, G.R.G. Mure’s translation). According to 
Aristotle, there’s geometry dealing with continuous lines, and there’s 
arithmetic dealing with discrete numbers, and we should not mix the 
two together or bad things might happen. Much of the subsequent 
history of mathematics and physics is often read as the story of grad-
ually bridging the gap toward a unified mathematical science.

But this is a problematic narrative. It is obvious that spatial measure-
ment and enumeration have developed together. When one measures 
land or cloth for taxation or trade, one uses numbers. When one rea-
sons about numbers, spatial organization (triangular numbers, square 
numbers, rectangular numbers) plays a significant role. Geometry and 
arithmetic grew together, and were then forced apart by ancient high-
brow scholars.

The received narrative says that the Pythagoreans discovered that 
some ratios between lines (such as the side and diagonal of a square) 
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were “incommensurable”—that is, their ratio could not be expressed 
as a ratio between whole numbers. The reaction to this crisis was the 
extravagant overkill captured in Aristotle’s prohibition: remove all 
arithmetic from geometric discourse. Instead of stating that when some 
lines are given numerical values, others might be expressible numer-
ically only by approximation (which is the practical thing to do), clas-
sical Greek geometry was exhaustively recast with no reference to 
numbers. The monster of incommensurability or irrationality was 
barred from arithmetic by caging it in the realm of geometry.

But even in classical Greece, practical people went on with the daily 
business of mixing geometry and arithmetic (Asper 2008). It was only 
a small elite that practiced pure geometry. This elite constituted a dis-
tributed network of players writing in a practically secret language—
not in the sense of a cipher, but in the sense of a highly codified lexicon, 
syntax, and logic that could not be imitated without proper initiation 
(Netz 1999; Latour 2008). Being an esoteric language mastered by an 
elite minority surely helped geometry become venerated in Plato’s 
academy as a gateway to some higher truth beyond the grasp of land 
surveyors and accountants. This scholarly approach barred not only 
the monster of irrational numbers but also the unjustified, inconsis-
tent, and imprecise practices of common folk.

Soon enough, however, monsters crept up again (from the East!). 
The mathematics of South and West Asia merged and brought irratio-
nal numbers—square roots treated as numbers rather than as geomet-
ric magnitudes—to the Arabic heirs of classical Greek science. As those 
monstrous algebraic entities grew more common and useful, they had 
to be integrated, rather than barred.

This was a project that started with some of the earliest surviving 
Arabic algebras (al-Khwarizmi and abu Kamil), which provided Euclid-
ean representations and proofs for the algorithms solving quadratic 
equations (Rashed 1994). In Renaissance Italy, algebra grew wilder 
and allowed even more suspect entities, such as subtractions of larger 
numbers from smaller ones and the roots of their results. The epitome 
of the efforts to geometrize Italian algebra, including such monsters as 
roots of negative numbers, belongs to Bombelli’s L’Algebra (see chap-
ter 6, figure 6.4 and discussion). It was soon superseded by the Carte-
sian analytic method at the brink of early modernity.
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We see here that plural practical mathematics, which lives with 
monsters, and codified scholarly mathematics, which seeks to bar mon-
sters, have a third alternative. We’ll call it monster taming: the trans-
lation of new and suspect entities into the language of an established 
foundation. The tension between the three strategies is one that math-
ematics continued to engage with throughout its future.

With the onset of early modern science, a new monster reared its 
head: the infinitesimal. Infinities and infinitesimals became consti
tutive elements of proto-calculus and calculus. The Jesuits, Thomas 
Hobbes, and George Berkeley all fought to banish them from mathe-
matics due to their dangerous hybrid properties and inconsistencies 
(Alexander 2014; Berkeley 1734). Observables and the dicta of author-
ities were to be the sole basis for mathematics. Infinitesimals were to 
be barred.

Other mathematicians, like Euler, were happy playing with the 
monster. They knew it involved contradictions, but they engaged with 
it nonetheless (Jahnke 2003). This does not mean that they were happy 
with inconsistencies. In fact, when Euler calculated the sum of the 
divergent series ∑∞

n=0(–1)nn!, he was comfortable with his result pre-
cisely because it was arrived at consistently in several different ways 
(Sandifer 2007, ch. 31). Contradictions were not welcome, but they 
were avoided by picking methods in context, rather than by postulat-
ing a priori rules.

The third approach, that of monster taming, was explored at the 
time as well. Some of the earliest to use infinitarian arguments (for 
example, Fermat, Newton, MacLaurin) either argued for the possibil-
ity of, or actually practiced, a reduction of infinitesimal arguments to 
proofs by contradiction following the Archimedean method of ex-
haustion. Instead of using infinitesimals to calculate the area of curvi-
linear shapes, they used improving rectilinear approximations to show 
that any value lower (respectively, higher) than the calculated area is 
exceeded by the area of a rectilinear shape circumscribed in the origi-
nal shape (respectively, exceeds the area of a rectilinear shape circum-
scribing the original shape).

Later, Carnot (1813; see also Schubring 2005) offered a whole cata-
logue of attempts to reinterpret infinitesimals by means of established 
mathematical entities. These attempts boil down to the method of ex-
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haustion from the previous paragraph, limits of ratios of evanescent 
quantities (based on Newton’s first and last ratios), and two algebraic 
methods: Lagrange’s identification of derivatives with coefficients in 
power series instead of ratios of infinitesimal differentials, and an orig-
inal attempt to view infinitesimals as independent corrective variables 
(more detail is available in the second section in chapter 6). Rather 
than choose, Carnot advocated a pluralistic approach. Monster taming 
by translation does not necessarily mean a unique translation. Even 
Cauchy, who is usually understood as having reduced infinitesimals 
to limits, is most convincingly read as striking a compromise between 
limits and infinitesimals (Schubring 2005).

But these plural compromises didn’t last, and by the end of the 
nineteenth century infinitesimals were reduced to sequences of van-
ishing numbers. Note the foundational twist here: as geometry, with 
its new non-Euclidean and projective varieties, lost its age-old stabil-
ity, arithmetic became the leading candidate for monster taming. The 
project of arithmetization spanning from Bolzano to Weierstrass and 
Dedekind culminated in the attempt to reduce all mathematics to the 
sequence of natural numbers and its subsets.

But the tamed infinitesimals and irrationals of arithmetic gave rise 
to new monsters, which in turn invoked a counterinsurgency of mon-
ster barring. The monsters were Cantor’s infinite sets and their para-
doxes, bound together with highly nonanalytic functions (continuous 
functions without derivatives, space filling curves, and so on). Poin-
caré protested: “Formerly when a new function was invented, it was 
in view of some practical end. To-day they are invented on purpose to 
show our ancestors’ reasonings at fault, and we shall never get any-
thing more out of them” (1914, 125).

The most famous attempt at barring these monsters is Brouwer’s 
intuitionism. It reduced mathematics to a constructive core, excluding 
the law of excluded middle and complete infinities. The work of Le
besgue, Borel, and Baire on descriptive set theory had followed a re-
lated path. According to this approach, sets of numbers could not be 
trusted unless they belonged to a controllable hierarchy of increas-
ingly complex constructions (Cavaillès 1994). Discussions of construc-
tability turned the axiom of choice (saying, roughly, that I can simul-
taneously choose one element from each set in an infinite collection of 
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sets) from something too obvious to even notice into an independent, 
questionable axiom. But these attempts at monster barring proved ei-
ther too restrictive or monstrous in their own ways.

Hilbert’s formalism offered a new form of monster taming. In his 
architecture, monsters could roam free, as long as their mathematical 
habitats could be axiomatized in a contradiction-free manner. We 
don’t need to choose between mathematics with or without infinity, 
with or without the axiom of choice, with or without nonconstructible 
sets. Each kind of theory can be developed independently based on its 
own consistent axioms and without conflict with alternative theories. 
But we shouldn’t jump to the conclusion that Hilbert’s monster tam-
ing has won over the constructivists’ monster barring. More and more 
mathematicians are interested in constructive versions of existing 
theories—not due to ontological concerns, but because of algorithmic 
applications.

It seems that modern mathematics won’t stand for living with un-
tamed monsters. But this is not precisely the case. Some mathemati-
cians interested in the foundations of category theory and set theory 
are concerned that their conjunction does not have a well-articulated, 
consistent axiomatic foundation (though this is not a universally en-
dorsed position). As Pierre Cartier stated in an interview:

Nowadays, one of the most interesting points in mathematics is that, al-
though all categorical reasonings are formally contradictory, we use them 
and we never make a mistake. . . . [A] revolution of the foundations similar 
to what Cauchy and Weierstrass did for analysis is still to arrive (Fresán 
2009, 33; see also the abstract in Krömer et al. 2009, 472–74).

But Cartier still claims here that contradictions must be resolved. 
This is not as obvious as it sounds. Concerning the contradiction that 
Russell discovered in Frege’s set theory, Wittgenstein stated:

If you based something on this system, I don’t see that it would necessarily 
be detrimental if there were a contradiction in it, as long as this contradic-
tion is just not used as a thoroughfare or circus [thus allowing to derive 
any statement whatsoever]. . . . The only point would be: how to avoid going 
through the contradiction unawares (1976, 227).

While Turing reacted negatively to this assertion, contemporary para-
consistent logic (which allows contradictions without collapsing into 
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triviality by rejecting the truth of some implications with a false 
premise) is precisely in line with Wittgenstein’s advice on taming the 
contradiction.

It is important to mention here Imre Lakatos, who developed a 
beautiful dialectical conception of mathematical practice based on 
managing the encounter with monsters (his own term) in Proofs and 
Refutations (1976). According to this dialectic, a mathematical claim is 
made and justified. Then a “monster”—a so far unthinkable example—
shakes the generality of the claim. The claim is then reformulated to 
fit the conceptual impact of the new example by various strategies.

This third narrative discussed a historic tension between three me-
ta-mathematical approaches: monster barring (excluding problematic 
or contradictory entities from mathematics); monster taming (trans-
lating these entities into more acceptable mathematics); and living 
with monsters (acknowledging contradictions and avoiding them by 
pragmatic experience). Dominant philosophies of mathematics usu-
ally do not engage this problematic. They tend to assume that monsters 
have already been barred or tamed (a particularly challenging excep-
tion is Colyvan 2010).

But monsters are dangerous. The monstrous probabilistic models 
ignored by the Black-Scholes formula (noncontinuous prices, distribu-
tions with infinite moments) came back with a vengeance. According 
to some analysts, it was due to their very presence that option pricing 
formulas failed and led to markets crashes (Nassim Taleb’s so-called 
black swans). Now this interpretation must be taken with a grain (or 
rather a handful) of salt. Indeed, markets have been crashing for cen-
turies, long before Black-Scholes came to the fore. But trying to pretend 
pricing model monsters away may have contributed to the specific 
structural circumstances of the most recent crashes. Closing the door 
on monsters left a wide-open window for them to crawl back in . . . 

History 4: Authority, or Who Gets to Decide What Mathematics 
Is About

Let’s track back to the beginning of the last historical narrative. I fol-
lowed Netz’s claim that the creation of a codified elitist language helped 
bestow on elitist Greek mathematics the aura of access to a higher 
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truth. Now this aura is not something sui generis. This impression had 
to be encouraged.

One of those who encouraged it was Plato. In the 7th book of the 
Republic, he wrote that “the knowledge at which geometry aims is 
knowledge of the eternal, and not of aught perishing and transient. . . . 
[G]eometry will draw the soul towards truth, and create the spirit of 
philosophy.” While Plato found his contemporary standard of mathe-
matical teaching unsatisfactory, he believed it “would be otherwise if 
the whole State became the director of these studies and gave honor to 
them; then disciples would want to come, and there would be contin-
uous and earnest search, and discoveries would be made” (Plato 1973, 
219–20). We see that for Plato mathematics is authorized by and for 
philosophy, and that the state is called upon to enforce this authority. 
But this does not mean that authority, philosophy, and mathematics 
necessarily go hand in hand.

The history in the previous section proceeded to the early modern 
concern with barring or living with infinitesimals. As Amir Alexander 
makes clear, this concern was highly overdetermined by concerns over 
authority. “In Italy it was the Jesuits who had led the charge against 
infinitesimals, as part of their efforts to reassert the authority of the 
catholic church” (Alexander 2014, 13). And later in England, when “the 
low mixed with the high, and boors such as Wallis were allowed in 
high society, what hope was there for court and king to establish their 
[Hobbesian absolute] authority?” (Alexander 2014, 7).

As for Berkeley versus Newton, things are even more explicit. The 
critique of Newton’s method in The Analyst (1734) revolves around the 
supposed supremacy of mathematical reasoning over religious rea-
soning. Question 49 reads:

Whether there be not really a Philosophia prima, a certain transcendental 
Science superior to and more extensive than Mathematics, which it might 
behove our modern Analysts rather to learn than despise?

And question 63 follows with:

Whether Mathematicians, who are so delicate in religious Points, are 
strictly scrupulous in their own Science? Whether they do not submit 
to Authority, take things upon Trust, and believe Points inconceivable? 

www.TechnicalBooksPdf.com



 Histories of Philosophies  •  35

Whether they have not their Mysteries, and what is more, their Repug-
nancies and Contradictions?

Mathematical, political, and religious authorities were engaged in a 
conflict that surfaced around the question of infinitesimals. Philosoph-
ical critiques or praises of mathematical reasoning were thoroughly 
entangled with social alliances around this division of authority.

The concern with authority gains an interesting twist at the be
ginning of the nineteenth century. It’s no longer about constitutive 
authority—who has the authority to dictate logico-mathematical 
terms—but about creative authority, namely, who creates mathemati-
cal knowledge.

German idealism, starting with Fichte, had a hard time accepting 
Kant’s dichotomies (see chapter 7). They sought to unify a priori rea-
son and a posteriori being. One way of doing that was to let reason 
and creative imagination generate knowledge not only when applied 
to given intuitions, but also by constituting it directly. In this ver-
sion, geometry is not given by a transcendentally deduced synthetic 
a priori, but generated by the subject as free to form and construct its 
own world.

Fichte asserts that space and points are not sufficient for geometry 
to arise in human culture. We require one further ingredient that for 
him is tacitly assumed in the Euclidean system—freedom. We have to 
presuppose the free acting of the human being in order to move points 
around in space into a line: “Geometry arises through the free acting 
of my I, by moving the point into a line in space” (Wood 2012, 89, quot-
ing the Zürich Wissenschaftslehre lecture).

This way of thinking finds its echoes in the discourse of mathema-
ticians. Dedekind, for example, stated that turning a line of rational 
numbers into a continuous line of real numbers may depend on “a 
creation of new point individuals” (Ewald 1996, 772), and that the 
existence of an infinite sequence is proven by observing the objects in 
“my own realm of thought” (Ewald 1996, 806). Kronecker’s famous com-
ment about God creating only the natural numbers, leaving the rest to 
humans, is compatible with this sentiment, except that Kronecker 
uses it to disparage what he considered dubious human creations—the 
very creations that Dedeking exalts.
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When we reach Brouwer, we find that “mathematical contemplation 
arises in two phases as an act of the will in the service of the instinct 
for self preservation of the individual man” (Ewald 1996, 1175). This 
refers to the abstraction of the sequence of natural numbers from tem-
poral and causal attitudes. The language of Brouwer’s passages is filled 
with the style and jargon of German idealism and its aftermath, pro-
jecting all the way into Husserl’s phenomenology.

My point here is not to reiterate the previous history’s concern 
with constructivism for the purpose of monster barring. Here we are 
dealing with the creative authority of man with respect to mathemat-
ics, and with a coalition of mathematicians and philosophers formed in 
order to assert the authority of man as creator. But we should note, at 
least in passing, another trend that surfaced at the same time—namely, 
the rise of statistics. Statistics is, by definition, the mathematics of the 
state, designed to allow governments to rule, forming a strong coali-
tion between mathematics and political authorities.

While mainstream continental philosophy up until the mid-twentieth 
century tended to view man (and in the twentieth century, increas-
ingly, women too) as self-creator, it was the analytic tradition that 
posited mathematics as a central concern. In this tradition, scientific 
realism has been gaining ground, partly relying on the “indispens-
ability argument” attributed to Quine and Putnam: the claim that we 
should believe in the reality of mathematical entities because they 
play an indispensible part of contemporary science, which, for ana-
lytic philosophers, is our most successful attempt to understand and 
define reality.

This argument means that authority has been shifted from self-
creating man and the investigations of philosophers to modern science. 
Mathematics gains its status not because of its introspection or foun-
dations, but because of its indispensible services rendered to science. 
As Reichenbach put it, adherents of his philosophy

refuse to recognize the authority of the philosopher who claims to know 
the truth from intuition, from insight into a world of ideas or into the na-
ture of reason or the principles of being, or from whatever super-empirical 
source. There is no separate entrance to truth for philosophers. (Schilpp 
1949, 310)
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But there’s a risk to mathematical autonomy in this approach. What 
happens if new science turns out to make less essential uses of math-
ematics? And what about the many branches of mathematics that 
are useless for empirical science? Do they become less objective or 
less true?

Naturalist philosophy of mathematics tries to counter this stance: 
“sets are just the sort of thing set theory describes; this is all there is 
to them; for questions about sets, set theory is the only relevant au-
thority” (Maddy 2013, 61). The authority over mathematics belongs 
to mathematicians. No one else can do a better job than mathemati-
cians in scrutinizing their work. But even here, Maddy’s choice to re-
spect the standards of mathematicians (rather than, say, those of astrol-
ogers) has to do with mathematical conformity with the overall modern 
scientific project (Maddy 2013, 350–51).

The issue at hand is therefore who has authority over mathematical 
standards: mathematicians, philosophers, scientists, statesmen? We 
can, of course, acknowledge that the answer is “all of the above.” Only 
a sustainable coalition of players in the preceding fields can give rise 
to strong and viable mathematical institutions. But the philosophical 
debate seeks to strengthen the position of some players at the expense 
of others in order to facilitate certain coalitions and standards.

Note one more dimension of this debate. Haug and Taleb (2011), 
quoted in the introductory vignette, severely attack mathematical econ-
omists who pretend to assert authority over the economic practice of 
trading (“scientists lecturing birds on how to fly”). Here the authority 
dispute is not about mathematics, but about mathematics overstep-
ping its boundaries, and interfering with economic practice.

The “Yes, Please!” Philosophy of Mathematics

If there’s one thing that’s common to all the philosophical currents 
surveyed in the preceding histories (but by no means to all philoso-
phies of mathematics), it is that they make us choose. We’re expected 
to decide that mathematical objects are either in nature or they’re not; 
that mathematical statements are either synthetic or analytic; that mon-
sters should be allowed into mathematics or that they be barred; that 
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mathematicians should set their own standards, or that they should let 
philosophers, scientists, and agents of power trace their path.

But making us decide assumes that mathematics is monolithic 
enough to warrant a decision. And it’s not. Mathematics is many 
things under a common name, which obey many conflicting norms 
and standards. We don’t have to choose. The correct answer to the 
philosophical questions articulated in this chapter is an emphatic “all 
of the above!” In some specific contexts, one may have good reasons 
to persuade mathematicians or philosophers to prefer one choice over 
another, but if we want to think of mathematics as a whole, we need 
to acknowledge that the different philosophies of mathematics cap-
ture different aspects of mathematical practice (for a different, more 
analytic pluralist approach to mathematics see Friend 2014).

This kind of answer seems to turn philosophy of mathematics into 
a pointless effort; but this is also wrong. Given the plurality of mathe-
matics, we still have to explain what mathematics does, how it works, 
and what makes different expressions of mathematics stand out in our 
scientific culture. We need to come up with an account that helps us 
figure out how we would like to relate to mathematics in our various 
schemes of things—but all that will be deferred to chapter 3.

Before we go there, the next chapter will demonstrate that mathe-
matics can indeed be so many different things, even if we look at a 
particular branch of mathematics in a particular time and place. We 
will show what kind of plurality the philosophy of mathematics must 
embrace, if it is to be faithful to the phenomenon that it seeks to 
explicate.
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C H A P T E R  2

The New Entities of Abbacus and Renaissance 
Algebra

Abbacus and Renaissance Algebraists

This chapter will offer a historical narrative of some elements of the 
new algebra that was developed in the fourteenth to sixteenth centuries 
in northern Italy. Before we begin the story of mathematics, though, 
I’d like to say something about the mathematicians.

The mathematics we’re considering emerged from a practical con-
text. It was written by abbacus masters—teachers who ran arithmetic 
schools for merchant children. Despite their title, they had little to do 
with the abacus as instrument of calculation (this is why I follow Jens 
Høyrup’s spelling here, based on the vernacular variant abbaco). Their 
teaching focused on decimal representation with its calculation algo-
rithms (algorism) and practical problems of exchange, partnership, in-
terest, measurement, and so on.

The teachers’ status was parallel to other lower and mid-level lib-
eral professionals, below that of jurists and medical doctors. Aside 
from teaching mathematics, these masters worked as engineers, sur-
veyors, and accountants. They were paid either by local authorities or 
directly by the parents of their students (Ulivi 2002, 2008).

While algebra was not taught in their schools, some masters pur-
sued algebra as a leisure activity. They also used algebra to gain re-
nown and impress prospective clients (Høyrup 2008). Not all their 
textbooks include algebra (for example, Swetz 1987), but among the 
hundreds of surviving manuscripts listed in Van Egmond’s catalogue 
(1980), there are quite a few dealing with algebra, including some that 
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develop it creatively in a period that is usually supposed to be one of 
mathematical stagnation. Reviews of abbacist algebra and its sources 
are available in Franci and Rigatelli (1985) and Høyrup (2007).

In the sixteenth century, the vernacular culture of abbacus masters 
and the Latin humanist and university cultures began to merge. This 
is the time of the famous solution of cubic and quartic equations by 
Dal Ferro, Tartaglia, Cardano, Ferrari, and Bombelli. This is also the 
period of decline of abbacus schools and rise of the new Italian sci-
ence. This chapter will try to follow some of the important mathemat-
ical developments of this period, and analyze them in terms of a “Yes, 
please!” philosophy of mathematics.

The Emergence of the Sign of the Unknown

Our starting point is the manuscript page in figure 2.1. This page re-
counts a problem about five men finding a purse. The first person says 
that if he were given the purse, then together with his own money he 
would have 2¹-₂ times as much as all the others combined. The second 
says that if he were given the purse, he would have 3¹-₃ times as much 
as the others. The others follow suit, ending with the fifth person stat-
ing that if he were given the purse, he would have 6¹-₆ times as much as 
the others.

This problem has a long history. Problems with the same structure 
occur already in Greek sources. A version with an actual purse occurs 
in Mahavira’s seventh-century Sanskrit arithmetic. The specific prob-
lem recounted earlier was stated by Leonardo Pisano, better known as 
Fibonacci, at the beginning of the thirteenth century, 250 years before 
Benedetto’s rendition (Singmaster 2004, §7.R).

One striking feature of Benedetto’s manuscript is the division of the 
page into calculations and running text. As Jens Høyrup noted (2010), 
the calculations occur on the left-hand side; only after they were done 
was the running text appended to the right. The calculations include 
elements that look very much like modern linear combinations of vari-
ables (figure 2.2). Comparing the calculations to the running text (fig-
ure 2.3), we see that the letter b in the calculation diagrams stands for 
borsa (purse), and the crossed q, a ligature for qua, stands for quantità 
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Figure 2.1: Manuscript page from Maestro Benedetto’s fifteenth-century Florentine 
Trattato de Praticha d’Arismetrica. Copyright Biblioteca Comunale degli Intronati, 
Siena, L.IV.21, fol. 263v. 2015. 11, 24.
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(quantity). The former represents the amount of money in the purse, 
and the latter represents the quantity of money of the first person in 
the story.

The obvious question is: where does the practice of using letters 
and ligatures to represent unknown quantities come from? Histori-
cally, this is hard to track down. Since calculations were done either 
on dustboards or scrap paper, we have few surviving calculations 
schemes such as the one in Benedetto’s manuscript (Høyrup 2010). 
But here we have an easy contextual answer. Indeed, the text in figure 
2.3 ends with a ligature representing the monetary unit Fiorino.

This usage indicates that the sign of the unknown quantity did not 
have to be “invented.” It was appropriated from economical practice. 
The b is not just an abbreviation of borsa; it serves as a sort of mone-
tary denomination—the very amount of money that one finds in the 
purse. The same goes for the crossed q. Adding the two together is no 
different from adding different kinds of money in one line. Calculating 
with these signs does not require any new ideas.

The economic context may also explain the way that the calculation 
in figure 2.1 is set: a column of consecutive transactions applied to a 
given amount of money. This echoes the system of double-entry book-
keeping, which developed at the same time and place by the same ab-
bacists (a strict relation between the two ways of writing is not proven 
conclusively, but the analogies are substantial; see Heeffer 2011).

So far, however, the discussion has only concerned the form of rep-
resentation: the symbols used and the ways they are set on paper. 
What about the concept of an unknown or variable magnitude? Can 

Figures 2.2 and 2.3: Details from Benedetto’s Trattato de Praticha d’Arismetrica. 
Copyright Biblioteca Comunale degli Intronati, Siena, L.IV.21, fol. 264r. 2015. 11, 24. 
The shorthand (top) reads: “1¹‐₂ q 1¹‐₂ b. m 5”; the running text (bottom) reads: “1 quantità 
[and a] ¹‐₂ and 1 borsa [and a] ¹‐₂ less 5 fl.”
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we account for it from within the economic context of the Italian ab-
bacus tradition?

In order to give an account of the emergence of a concept of an 
unknown magnitude, I picked out three quotations from two abbacus 
treatises. Each illuminates a slightly different aspect of how mathe-
matical variability emerges from economic practice. Each quotation is 
rather trivial and unremarkable. But I think that together they point to 
where algebraic unknowns and variables come from.

The first is a “rule-of-three” exercise. Suppose you know that the 
price of A units of a product is C, and want to know the price of B units 
of the same product. The rule of three is the standard procedure that 
answers this question by taking the known price C, multiplying it by 
B, and dividing by A. Here’s one variant from Piero della Francesca’s 
Trattato d’Abaco (this is indeed the famous Renaissance painter; he 
wrote mathematical treatises as well):

A pound of silk costs 5 libre and 3 soldi, how much are 8 ounces? You have 
to multiply 8 ounces by 5 libre and 3 soldi. This makes 41 libre and 4 soldi. 
Dividing by one pound is no good, this works by converting to ounces, 
which are 12 per pound. Now divide 41 libre [and 4 soldi] by 12. . . . (della 
Francesca 1970, 43)

According to the rule of three, we should take the known price (5 libre 
and 3 soldi ), multiply by 8 ounces, and divide by 1 pound. But for this 
to work, we need homogeneity of units. So we need to convert 1 pound 
to 12 ounces.

There seems to be nothing remarkable here. The only thing I’d like 
to point out is that in specific contexts of calculation, such as this one, 
some numbers may have to be replaced by others (here 1 must be re-
placed by 12). The symbol “1” does not necessarily represent its face 
value in the context of this calculation. In this specific context, it actu-
ally stands for 12. So in a very unremarkable manner, sometimes num-
bers (independently of unknowns and variables) stand for values other 
than their face values.

The next quotation is from Maestro Benedetto’s Tractato d’Abbacho 
(Arrighi 1974, erroneously attributed to Pier Maria Calandri). This 
is  the same Benedetto from the problem that opened this chapter. 
Since he wrote on practical mathematics in a commercial context, it’s 
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not surprising to find in his treatise a chapter devoted to currency 
conversion.

The fiorino, to this money there is no fixed value, because sometimes it 
goes up by a few scudi and sometimes it goes down in price. At present it 
is worth around 6 libre, 3 soldi and 4 denari. There is of course an imagi-
nary value that’s called golden scudo, which is always stable, so that the 
fiorino is worth 20 golden scudi and the golden scudo 12 golden denari. 
(Arrighi 1974, 34)

The fact that money has a fluid exchange rate is taken for granted 
nowadays. But to note this fact in real time requires a relatively 
evolved commercial society that works with several kinds of coin, and 
is sensitive to the economical volatility of other economies and to the 
relative scarcity of metals. In this kind of situation, one may introduce 
imaginary monetary units in order to be able to draw standard calcu-
lations regardless of these volatile exchange rates. These imaginary 
units do not correspond to any actual coin (Einaudi 2006).

We see here a very trivial manifestation of a sign that changes its 
value, and a practice of inventing ideal magnitudes that serve as aids 
for calculation. Nothing here is very striking, but this system of vari-
able values and of terms without worldly reference is required for 
practical mathematical economy even before we introduce unknowns 
and variables.

The last quotation is slightly trickier, at least for a contemporary 
reader. It reads:

If 4 were the half of 12, what would be the ¹-₃ of 15? (della Francesca 
1970, 48)

For us, this makes no sense—4 simply isn’t half of 12. But the context 
can reveal what’s going on. This, like the previous quotation from 
Piero, is an example of the rule of three. It’s about conversion. It is an 
abstraction from questions like “if 4 pounds of silk were worth half of 
12 soldi . . . ,” or “if 4 fiorini were worth today half of what 12 fiorini 
were worth a year ago . . . .” This kind of abstract, seemingly counter-
factual, conversion problem was typical of Iberian treatises, and was 
found in Italy as well (Høyrup 2012). Once again, we see here that a 
number sign need not stand for its face value.
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So even before we come up with letter signs for unknowns and vari-
ables, we already have economic and arithmetical practices where math-
ematical signs stand for values other than their face values, where they 
stand for variable values, and where they lack a real object as their ref-
erence. Once we superimpose these practices on letters and ligatures 
that represent economic values, such as those shown earlier, we have 
the symbolic practice that will give rise to unknowns and variables (a 
further analysis of this process is available in Wagner 2010a).

First Intermediary Reflection

How does the story told so far fare with respect to the philosophies of 
mathematics surveyed in the previous chapter? We can definitely find 
support in the earlier narrative for the empiricist philosophical under-
standing of mathematics as an abstraction derived from worldly ob-
servations. However, while we usually think of mathematics as ab-
straction from natural science observations (especially physics), here 
the abstraction emerges from the realm of a social science: economy.

While observations emerging from natural sciences seem to reflect 
a given natural order, economic order is usually considered as contin-
gently formed by humans. It is therefore not clear how to place these 
observations and their abstractions in a dichotomy between an empir-
icist natural order and the free conception of humans.

If we try to examine this narrative with respect to realist views, 
difficulties occur as well. On the one hand, if mathematical values de-
rive from economic practice, where signs have variable values, they 
are nothing like the stable and ideal Platonic entities. However, we 
saw that sometimes ideal stability of value has to be imported into 
economic practice (in our case, the golden scudo). The appeal to ideal-
izing imagination in this context could be interpreted as an appeal to 
an ideal reality, detached from the fluid world of phenomena. (We 
observed this attitude in the context of practitioner’s remarks on the 
Black-Scholes formula as well.) So the mathematical world we’re de-
scribing has to do with both Platonist and empiricist conceptions.

If we try to think in Kantian terms instead, we might consider the 
main tool of abbacist calculations, the rule of three, as an a priori 
rule. Indeed, it cannot be empirical, because empirically, the price of a 
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product is often not directly proportional to its quantity—this is the 
very logic of bulk purchase discount. So the rule of three is not an in-
ductive generalization, but a normative standard that gives regulative 
sense to the very notion of pricing a different amount of the same 
commodity. (This claim is elaborated in a different manner in the anal-
ysis of the concept of “value” in Heeffer 2011.) While it is a priori, the 
rule of three is not included in the concept of pricing, and is therefore 
synthetic.

The rule of three can also be considered synthetic a priori in the 
sense that it assumes an intuition of temporality inherent in the con-
cept of value; indeed, economic values require temporality to fluctuate. 
However, traditional synthetic a priori interpretations of mathematics 
draw a sharp boundary between fixed numbers and fluid variables, 
which is not available in the abbacist context (“if 4 were half of 12 . . . ”). 
The mathematical world of the abbacists, being a reflective standard-
ization of economical practice, lives with monstrous hybrids between 
fixity and mobility that the Kantian scheme would not tolerate.

Abbacist mathematics is indeed world-making, and many authors 
since Marx have argued for connections between the economic con-
ceptions of value in early capitalism and the quantified, computational, 
and alienated world that we live in today. But this is a contingent 
neo-Kantian form of world making, far removed from Kant’s tran-
scendentally deducible synthetic a priori. Kantianism, like empiricism, 
nominalism, and Platonism, are all reflected in abbacus mathematics, 
but only as partial aspects of a more complex phenomenon.

The Arithmetic of Debited Values

The problem that we opened with, about the five men finding a purse, 
is, as noted earlier, presented already in Fibonacci’s 1202 Liber Abaci. 
One notable feature of this question is that it is among the earliest 
European examples of problems with negative solutions (Sesiano 
1985, 118).

Fibonacci figured that the money of the first person (q1) together 
with the purse (b), being 2¹-₂ times as much as all the others, must con-
stitute ⁵-₇ of the total amount of money between the purse and all five 
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people (q1 + … + q5 + b). Putting together the analogous information 
from the declarations of the other people, one obtains identities of the 
(anachronistic) form q1 + b = ⁵-₇(q1 + … + q5 + b); q2 + b = -₁³-₃-(q1 + … + 
q5 + b), . . . , q5 + b = -₄⁶-₃-(q1 + … + q5 + b). Summing up these identities, 
Fibonacci could find the ratio between the money in the purse (b) and 
the total between all the people and the purse (q1 + … + q5 + b). He 
then posited the value 1,455,636 for the total amount of money—a 
number divisible by all the relevant fractions, so as to guarantee a 
solution with whole numbers—and proceeded with the calculation 
(note that the problem has six unknowns but only five equations, so it 
is underdetermined, and an arbitrary determination of one of the val-
ues is permitted). The purse then turns out to contain 1,088,894; as for 
the money of the first person:

[T]here will be 1,455,636 that is the amount of the purse and the denari 
[money] of the five men, and because the first has ⁵-₇ of the entire sum, you 
take ⁵-₇ of the 1,455,636 that is 1,039,740, and this many the first has with the 
purse. But because above more is found in the purse than is had between 
the purse and the first man, this posed problem will not be solvable unless 
the first man has a debit, namely that which is the difference between his 
amount plus the purse and the entire amount of the purse, namely that 
which is the 1,088,894 minus 1,039,749, that is 49,154. (Sigler 2002, 321–22)

Since the money of the first person and the purse turned out to be less 
than the money in the purse alone, the first person has to have a deb-
ited value, interpretable as debt. But this concern arises only when 
the final result is obtained, and does not intervene in drawing the 
solution.

Benedetto’s version is not a translation of Fibonacci’s (although he 
was aware of Fibonacci’s precedence, and even quoted his result, 
which is different from Benedetto’s, because of the previously noted 
underdetermination). The general idea, however, is similar, and leads 
Benedetto to derive the following relation between the quantità of the 
money of the first man, and the amount of money in the borsa.

. . . 1 quantità ₁³₈⁴₁⁴₉⁰₅⁷₄⁸₅ and 1 borsa ₁¹₈⁰₁⁷₉¹₅⁸₄⁹₅⁶ are equal to one borsa ₅². If next you 
remove from both sides 1 borsa ₁¹₈⁰₁⁷₉¹₅⁸₄⁹₅⁶, you have that ₁⁷₈⁶₁²₉²₅²₄⁵₅⁸ quantità are 
equal to ₁³₈⁴₁⁴₉⁰₅⁷₄⁸₅ debito de borsa. In order not to have fractions, multiply each 
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side by 1,819,545. We’ll have that 7,622,258 quantità is equal to 344,078 
borse debito. Therefore, the 344,078 borse debito are worth as much as the 
7,622,258 quantità mobile. Here it is clear that the quantità will have a de-
bito value. In order to have whole numbers you say that the first [person] 
will be worth debito 344,078, and the borsa will be worth mobile 7,622,258. 
(Siena, Biblioteca Comunale degli Intronati, L.IV.21, fol. 264r)

Here the debito (debited) and mobile (cash) values are not just qualifi-
cations pinned onto the solution at the end, after all the algebraic rea-
soning is done. They enter into the equations themselves. Moreover, 
the money of the other persons is calculated in terms of the quantità, 
so the debit is not only an output, but also an input for further calcu-
lations. In the 250 years separating Fibonacci and Benedetto, debito 
has turned from a description of the result of a calculation into an el-
ement inherent in mathematical practice. How can we account for this 
change?

I believe that there are two complementary processes here. On the 
one hand, numbers are determined by their nature or species. Numbers 
may be wholes, fractions (halves, thirds, quarters), monetary units 
(such as fiorini), measures of length or area, temporal units, algebraic 
unknowns, and so on. (Often enough, even the root of a number is 
considered as that number having the nature of a root, rather than as 
an operation applied to the number.) The nature or species of a num-
ber affects its value: 4 yards of silk, 4 halves, and 4 unknowns may 
obviously have different values. The rules governing a mathematical 
sign and its value depend on its nature, so each species of quantity has 
its own rules, and these rules are often presented separately. In the 
preceding problem, debit can be considered as yet another nature that 
a number can have, affecting its value and how we operate on it.

On the other hand, the nature of a number may be converted. (This 
is one reason why, as shown in the first part of this chapter, the value 
of a number is not necessarily its face value.) For example, when mak-
ing calculations, everything has to be brought to the same nature so as 
to provide a single bottom line. You can’t put together different cur-
rencies or fractions unless you convert to a common currency or a 
common denominator. When multiplying a whole and a root (for ex-
ample, 2 × √•3), the calculators were instructed to convert both to the 
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nature of a root (√•4 × √•3 = √•1•2). This practice leads to some strange 
procedures, such as bringing fractions to a common denominator be-
fore multiplying them—an apparent waste of effort from a contempo-
rary point of view.

It is this practice of conversion that allowed integrating debits into 
the common scheme of mathematical values as subtracted values. I ar-
gued (Wagner 2010c) that these two seemingly contradictory processes—
(ideal) division of quantities according to distinct species versus (em-
pirical-nominalist) fluid convertibility of values—were constitutive of 
the evolution of Renaissance algebra. But how did negative numbers 
even become a species of quantity?

Albrecht Heeffer (2008) offers an interesting explanation. We begin 
with one species of quantity in abbacus mathematics: the binomial—
namely, the sum or difference of a number and a root. Belonging to a 
distinct species, binomials required their own rules, including multi-
plication rules of terms such as (a – √•b )(c – √•d ). The discussion of the 
multiplication of the two subtracted roots (referred to as meno, liter-
ally “less”) in a product of such binomials was extracted from this 
context, giving rise to independent rules for meno numbers, including 
the famous “minus times minus is plus.” Extracted from binomials, 
meno became a new species of number, carrying with it the rules de-
rived from the rules governing binomials.

Heeffer’s argument can be further substantiated by an example that 
shows this process in “real time.” It is taken from Maestro Dardi’s mid-
fourteenth-century algebra (Dardi 2001; see also Van Egmond 1983). 
The example I’m about to quote follows Dardi’s list of 194 cases of 
equations, all reducible (in contemporary terms) to linear or quadratic 
equations. Since different species of numbers (wholes, roots, meno) 
were treated as distinct, equations whose coefficients belonged to dif-
ferent species were to be treated separately, which led to Dardi’s pro-
liferation of cases.

At the end of this exhausting (but not nearly exhaustive) list of cases 
and examples, come two remarks, which are not numbered as distinct 
cases (their position might suggest that they represent a later addi-
tion). The first remark considers equations of the form “unknown and 
number equal root”, such as 5C + 6 = √•9•0 (C, short for cosa—literally 
“thing”—is Dardi’s representation of the unknown quantity). To solve 
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this, one subtracts 6 from √•9•0, and divides the resulting binomial 
√•9•0 – 6 by 5, yielding √•3• ³-₅ – 1¹-₅.

Next, without any fanfare or ado, we have the following ground-
breaking paragraph, possibly the first in Europe to thematize a nega-
tive or debited solution independently of an explicit economic context:

Know that when you get C and numbers on one side equal to nothing (as 
some equations can be in many of the cases that we’ve discussed, many of 
which involve a difference or other things), you have to subtract the num-
bers from both sides, and you’ll get C equal nothing meno number, in 
which case you have to divide the number which is meno by the quantity 
of the C. Whatever comes from this is the C debita. Suppose that you get 
5C and 15 n[umbers] equal to nothing. Divide the 15 by 5, there comes 3, 
and such will be debita the unknown [cosa]. (Dardi 2001, 297; my transla-
tion depends on the Arizona manuscript described in Hughes 1987, which 
is being edited by Warren Van Egmond).

The equation 5C + 15 = 0 is solved by first reorganizing it as 
5C = 0 – 15, and then dividing the subtracted term by 5. The points 
made in the quoted paragraph are the following. First, the case “un-
known + number = nothing” is not an artificial addition, but some-
thing that may emerge from manipulating equations by means that 
already belong to our scientific arsenal (indeed, something like this 
happened in Benedetto’s solution of the purse problem). Second, the 
method of solution is presented as perfectly analogous to the preced-
ing case (the preceding binomial “root less number” is replaced here 
by the binomial “nothing less number”). In the final step, the subtracted 
number in the binomial is translated from a meno (less or subtracted) 
value into a debited value. We see here a direct and explicit link be-
tween binomials and the emergence of what will become, within a few 
centuries, fully fledged negative numbers.

When roots of negative numbers later emerge in Raffael Bombelli’s 
mid-sixteenth-century solution of cubic equations, a similar process 
occurs. Specifically, the dal Ferro–Tartaglia formula for solving the 
equation x3 = 15x + 4  states that the solution should be ³√2 + √4 – 125 
+ ³√2 – √4 – 125. This was rejected as senseless by most sixteenth-century 
mathematicians. Bombelli’s leap forward was to rewrite the difference 
4 – 125 as the binomial 0 – 121, and then use his version of more or less 
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known considerations for extracting cubic roots of binomials (deriv-
ing equations for determining the integer and root part of the binomi-
als, and looking for integer solutions by trial and error). The sum of 
cubic roots was thus reduced to (2 + √0 – 1) + (2 – √0 –1). Canceling 
the roots, one gets the result 4. Substituting this 4 into the original 
equation shows that it forms a correct solution.

La Nave and Mazur (2002) argue that Bombelli’s roots of negative 
numbers are introduced as a new species of number. Just as we have 
binomials (including binomials of the kind “nothing less number”), 
just as we have roots, and just as we have roots of binomials, we may 
introduce into our list of species roots of “nothing less numbers” bino-
mials. We can then formulate the rules of these binomials by analogy 
to other binomials, and use them to solve equations.

Second Intermediary Reflection

We saw earlier that the values of abbacist numbers and unknowns are 
not necessarily their face values. Even if they appear to be fixed num-
bers, their values may fluctuate. They come from an economic reality, 
but are not always empirically referential (for example, the imaginary 
golden scudo, or solutions in terms of irrational roots to pricing ques-
tions). This makes it difficult to fit them into Platonist/empiricist or 
realist/nominalist dichotomies. The rule of three, which governs the 
conversion of these values, can be viewed as some sort of a synthetic 
a priori foundation governing quantities. But given its contingent ap-
plicability, it can’t be viewed as a necessary transcendental truth.

The discussion of negative numbers in the previous section adds to 
these tensions. We see that the formation of negative numbers oper-
ates along three axes. The first is an empiricist-economical axis: the 
notion of debt and its integration into calculations. The second axis is 
Platonist: the division of quantities into ideal species, each of which has 
its own ontological status and rules, including binomials, meno terms, 
and their roots. The third axis is formalist: the derivation of mathe-
matical rules from axiom-like hypotheses about species of quantities.

To make the latter axis more salient, consider Dardi’s proof that the 
product of meno terms is additive. He considers the product (10 – 2) × 
(10 – 2). On the one hand, this should be identical to 8 × 8 = 64. On the 
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other hand, implicitly assuming distributivity, Dardi breaks this prod-
uct into 10 × 10, two terms of the form 10 times meno 2, and a product 
of a meno 2 with itself. The first three terms yield 100 – 20 – 20 = 60. 
The only way to reach the expected result of 64 is by stipulating that 
the product of a meno 2 with itself is an added 4. In other words, minus 
times minus is plus. Similar reasoning applies to Bombelli’s work with 
roots of negative numbers.

In this case, the rules governing a species of quantity turn out to be 
derived formally from implicit principles such as distributivity, rather 
than from a direct understanding of the underlying species. But the 
crucial point is that this formalist argument does not stand alone. It 
is superposed on an ontology that assumes a variety of species in the 
genus of quantity, including the meno species, and on an economic 
context of translating species of quantity into economic values (such 
as debts).

It is sometimes argued that the history of mathematics is a history 
of doing away with unnecessary divisions into species of quantities 
(namely, arithmetizing all the way down), and of abstracting beyond 
any empirical context. But this narrative ignores the productivity of 
these rejected practices. For instance, the insistence on considering 
numbers, roots, and binomials as distinct entities actually helped un-
derstand the solvability conditions of equations and find new solu-
tions. Indeed, it was by refusing to reduce numbers, roots and binomi-
als (a, √•b, a + √•b, a – √•b) to a homogeneous number concept, that some 
kinds of equations with positive integer coefficients could be proved 
not to have solutions consisting of square roots or binomials (one 
would substitute a certain species into the equation, and show that the 
result could not be a positive integer). Eventually, this exploration of 
the relations between the natures of coefficients of equations and the 
nature of the solutions of those equations probably helped guess the 
expected species of the solution and actually solve cubic equation (for 
details, see Wagner 2010a, §4).

So attempting to reduce mathematics to a single foundation (formal, 
empiricist, arithmetical, and so on) does not do justice to mathemati-
cal reasoning. Attempting to reconstruct a normative ideal for mathe-
matics by promoting one foundational axis at the expense of others is 
a problematic venture. This kind of reconstruction may help convince 
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us that mathematics is more likely to be consistent, but drives us fur-
ther away from an understanding of how mathematics works.

It is precisely the superposition of different aspects of mathematical 
entities (in this section, empiricist, Platonist, and formalist) that makes 
mathematical entities rich, useful, and robust. They don’t depend on 
just one foundation, but acquire their support from several anchors. If 
one foundation falls apart—if the Platonist division of species of quan-
tity is shaken, or if we fail to find an empirical manifestation of some 
mathematical entity or maneuver, or if we need to readjust formal rules 
because they end up contradicting each other—the other pillars that 
support mathematical reasoning allow it to survive and evolve.

False and Sophistic Entities

Negative numbers and their roots were subject to an ambiguous atti-
tude in Italian algebra. As algebra evolved and solutions of cubic and 
quartic equations were published by Cardano and Tartaglia, negative 
numbers became more widespread and naturalized than in earlier ab-
bacus treatises (and so I allow myself to use the anachronistic term 
“negative” rather the indigenous and ambiguous meno). Cardano and 
Bombelli, for instance, did resort to negative numbers in their work, 
but not without reservations.

Both Cardano and Bombelli acknowledged negative numbers as in-
terim results in the process of solving more complex problems. Occa-
sionally, they allowed negative numbers to stand even as final results. 
But at other times these same authors also tried to circumvent and 
avoid negative numbers, calling them false and sophistic. The result 
was an inconsistent mix of affirmations and denials of negative num-
bers (Wagner 2010c, §5).

Cardano, the more philosophically inclined of the two, had a signif-
icant change of heart concerning negative numbers as he approached 
the end of his life. In the famous Ars Magna, he stated, like his prede-
cessors, that a minus times a minus makes a plus. But later he repudi-
ated this claim, and argued that the product of minus terms has to be 
a minus (Tanner 1980a). This view was not Cardano’s alone. It has 
traces in authors such as Marco Aurel and Piero della Francesca as 
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well (Wagner 2010c, §5; this theme was later carried on by Thomas 
Harriot, see Tanner 1980b).

But how does this fare with respect to the proof quoted from Dardi 
earlier—a proof with a sound geometric interpretation that Cardano 
could not ignore? Indeed, Cardano did not deny that (10 – 2) × (10 – 2) 
= 100 – 20 – 20 + 4. He denied that this calculation had anything to do 
with the product of negative numbers. In other words, he denied the 
distributive identity (a – b) × (a – b) = aa + a(–b) + (–b)a + (–b)(–b). 
This may strike us as impossible, but if we do not take for granted the 
distributive law and identities such as and a – b = –(b – a) and a – b = 
a + (–b), a notion of negative number as distinct from subtracted num-
ber can be rendered consistent. Such an endeavor was indeed elabo-
rated in modern terms by Martínez (2006, 133).

Cardano’s argument was ontological. Positive numbers were sup-
posedly real, and negatives were “alien” to reality. The product of things 
alien to reality could not be real, and so the product of negatives had 
to be negative. If higher algebra were significantly employed in theol-
ogy or ontology, this argument might have had some impact. But this 
was not the case, and so distributivity prevailed. Subtracted numbers 
were superposed on negative ones, and the algebra that could have 
developed from Cardano’s arguments was nipped in the bud.

Bombelli’s approach was more instrumental. It is best exemplified 
in his treatment of the equation x3 + 165 = 9x2 + 9x. In order to solve 
this equation, Bombelli transformed it, and obtained the equation 
y3 = 36y – 84, where y = x – 3. (Today, we’d call it a change of variable; 
this was not Bombelli’s terminology or notation, but for this context it 
will do.) In Bombelli’s terms, the latter equation is “either impossible 
or the derivation of the equation was badly done” (Wagner 2010c, 504). 
In our terms, this equation simply has no positive solutions. Neverthe-
less, Bombelli goes on to state that “the value of the [y] being found 
(if it could be), if we would add 3 . . . the sum would be the value of the 
[x]” (Wagner 2010c, 504).

This statement hardly makes sense. What does it mean to add 3 to a 
value that does not exist? There are two explanations here. First, Bom-
belli was perfectly aware of negative solutions, and was proficient in 
handling them. He went through examples where a change of variable 
changes a negative solution into a positive one. This, however, is not 
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the case here—adding 3 to the negative solution of the new equation 
(for y) would still produce a negative solution of the original equation 
(for x). This was therefore useless for Bombelli.

The alternative explanation is that Bombelli dealt here not with a 
single isolated equation, but with an example for a general procedure. 
If the coefficients of the problem had been different, the procedure 
might work. The “165,” “9,” and “3” here did not stand just for their 
face values; they stood for all possible coefficients, including those 
that would allow the former method of solution to produce a positive 
solution.

This is, again, the principle of fluidity of mathematical signs. As 
mathematical signs change their values according to context, they 
may change their own nature or species, or the nature or species of 
related entities, such as solutions of equations. A negative solution 
may become positive, if the terms of the problem are changed. There-
fore, a “false” or “sophistic” solution cannot be discarded out of hand. 
Nonexistent entities can be treated arithmetically, because a change 
of context may turn them into something real (as in this context), or 
because they can facilitate calculation and can eventually be converted 
into a real result (as in the case of the imaginary golden scudo). Now if 
this kind of logic is applied to roots of negative numbers, it is no lon-
ger very surprising that Bombelli dared to go through them on his 
way to real solutions of cubic equations.

But this story has to be refined. In the solution of the cubic equation 
x3 = 15x + 4 considered earlier, which went through roots of negative 
numbers, the sophistic roots of negative numbers eventually cancelled 
out and yielded the real solution 4. In other examples, the cubic roots 
could not be transformed by Bombelli’s techniques into a real result, 
and the only available representation of the solution involved roots of 
negative numbers.

Bombelli wasn’t satisfied with this situation. To validate it, he sought 
a geometric representation. Indeed, he elaborated an entire system for 
translating algebra into geometry (Wagner 2010b; and the section on 
Bombelli in chapter 6). Among other things, he showed how to con-
struct the solution of a cubic equation using a right-angled ruler. This 
construction of a geometric magnitude that represented the solution of 
the equation did not provide representations for the roots of negative 
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numbers involved in the complex arithmetic representation of the real 
solution, but for Bombelli this form of representation was enough to 
lift the veil of “sophistry” that hung over his work.

Final Reflection and Conclusion

This part of the story is mostly about handling monsters. As the neg-
ative “monsters” began to emerge in a prosperous mathematical do-
main, abbacists simply lived with them, handling them ad hoc, while 
being aware of their dangers.

As their role became more central, we see more serious attempts to 
bar or contain them. Cardano’s later attempt was an attempt at mon-
ster barring. First, negative numbers were confined in the realm of the 
“alien.” Second, if we accept that the product of negatives is negative, 
then so are the roots of negative numbers, and the problem of negative 
roots of positive numbers together with the whole issue of complex 
numbers is circumvented. (This aspect of Cardano’s reasoning is high-
lighted by Tanner 1980a.)

Bombelli’s strategy, on the other hand, was first to live with mon-
sters: he thought that they were sophistic, but useful in obtaining cor-
rect results. Later he attempted to translate them to the well-established 
field of geometry by geometric constructions. As is typical of classical 
geometry, his approach has a distinct constructive streak: mathemati-
cal elements are admissible because they can be constructed from a 
small pool of elements and basic construction moves. However, for 
Bombelli’s constructions, ruler and compass were not enough; he had 
to adjust the notion of construction by including a right-angled ruler. 
Constructivity as criterion for monster barring or taming was a rather 
vague and flexible notion; this was true of early modernity (Bombelli, 
Descartes) as it was true of the turn of the twentieth century (Baire, 
Borel, Lebesgue).

Cardano’s attitude turned out to be on the losing side, but I argue 
that the reasons for the defeat are contingent. As I said, had there been 
a serious attempt to develop a mathematical theological ontology in 
Cardano’s time, his approach might have yielded an algebraic struc-
ture different from the one that emerged from Bombelli’s work. (If the 
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notion of doing ontology by mathematics strikes you as absurd, then 
check out the recent work of Alain Badiou.)

The two algebras—the algebra of subtracted numbers and the alge-
bra of alien negative numbers—could have lived side by side, network-
ing with various relevant domains of knowledge; or perhaps one of 
them—either one—could have suppressed and absorbed the other into 
its own terms. But we know that at the time the religious authorities 
(or at least the powerful Jesuits) preferred a mathematics that affirmed 
the old order over the introduction of new, suspect entities. The social 
coalition of successful mathematicians involved the rising commerce-
oriented classes, while older philosophical and theological authorities 
were fighting a slowly losing battle.

As for Bombelli, we should correct the impression that we’re deal-
ing here with the reduction of arithmetic monsters to geometry. In 
fact, Bombelli wrote that “these two sciences (that is Arithmetic and 
Geometry) have between them such accord that the former is the ver-
ification [prova] of the latter and the latter is the demonstration [di-
monstration] of the former” (Wagner 2010b, 234–35). The point is not 
to reduce one to the other, but to combine the two.

As I argued (Wagner 2010b; see also the section on Bombelli in 
chapter 6, later), this unification was not entirely conservative; it had 
to adjust the content of both geometry and algebra. But it is precisely 
because of this transformative unification that both geometry and 
algebra could be made more robust. Where arithmetic was edgy, one 
could turn to geometry for proof; where geometry was shaky, one could 
turn to arithmetic for verification. The project here is not a project of 
foundation, but a project of thickening the network of relations that 
constructs the relevant mathematical objects. In fact, throughout the 
history of the arithmetization of mathematics, we can find mathema-
ticians lamenting the loss of genuinely geometric points of view (for 
example, Poncelet, Poincaré, the early twentieth-century Italian school 
of algebraic geometry). The technical victory of arithmetic at the front 
of foundations, however, does not reflect the actual practice of mathe-
maticians who depend heavily on geometric intuitions.

A final observation concerns the issue of authority. We saw that 
a coalition of mathematics and old-school theology did not emerge. 
However, even the pragmatic Bombelli attempted to create a coalition 
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with the classical authorities. In the fifteen or twenty years between 
his manuscript and print edition, Bombelli became acquainted with 
Diophantus’s work. His reaction was to change his terminology and 
practice problems to come closer to Diophantus’s more abstract arith-
metic presentation. Like the attempt to unify geometry and algebra, 
the attempt to unify abbacist algebra with the Diophantine style was 
meant to strengthen the emerging science and confer classical Greek 
authority (which has been gaining respect throughout the Renaissance) 
on new ideas.

The purpose of this chapter was to follow abbacus and Renaissance 
algebra as a case study for what I called at the end of the previous 
chapter the “yes, please!” philosophy of mathematics. Rather than de-
cide between philosophical approaches and the divisions that underlie 
them, I wanted to show how competing philosophical approaches find 
an intertwining expression in mathematical practice. I prefer to view 
different philosophical approaches as descriptions of aspects of math-
ematical practice, rather than choose from among them a foundational 
or monopolizing explanation of what mathematics is. Platonism or 
empiricism; nominalist, formalist, and constructivist approaches; syn-
thetic a priori views; attempts to bar or tame monsters; conflicts or 
coalitions with other intellectual authorities—these are all parts of how 
mathematics works in very concrete and down to earth ways.

I am aware, however, that for many, such an eclectic approach to 
the philosophy of mathematics is not enough. The next chapter will 
therefore attempt to formulate a philosophical approach to mathemat-
ics that can serve as an integrative framework for the insights of the 
various philosophies of mathematics.
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C H A P T E R  3

A Constraints-Based Philosophy  
of Mathematical Practice

This chapter will take a detour around the host of problems dis-
cussed in chapter 1 in order to deal with them from a different per-
spective. Instead of asking foundational questions about the ground-
ing of mathematics, its freedom, its unique position, its monsters, or 
its source of authority, we will ask some questions about mathemati-
cal practice. How are mathematical statements used? How do people 
get to agree on them? How are they interpreted?

The resulting observations will be integrated into a constraints-based 
philosophy of mathematics: instead of debating the reality of mathe-
matical entities, we will think of mathematics as a field of knowledge 
that negotiates various kinds of real constraints. This contingent array 
of constraints and the various ways of juggling them lead to the for-
mation of various different mathematical cultures.

This perspective will then be brought back to explore the field of 
problems presented in the first chapter together with the issues of 
reality and truth. But our detour will shift the focus and span of these 
problems, and suggest a different outlook on managing them.

Dismotivation

The point is that the proposition 25 × 25 = 625 may be true in two senses. . . .
First, when used as a prediction of what something will weigh—in this 

case it may be true or false, and is an experiential proposition. I will call it 
wrong if the object in question is not found to weigh 625 grams when put 
in the balance.
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In another sense, the proposition is correct if calculation shows this—if 
it can be proved—if multiplication of 25 by 25 gives 625 according to cer-
tain rules.

It may be correct in one way and incorrect in the other, and vice versa.
It is of course in the second way that we ordinarily use the statement 

that 25 × 25 = 625. We make its correctness or incorrectness independent of 
experience. In one sense it is independent of experience, in one sense not.

Independent of experience because nothing which happens will ever 
make us call it false or give it up. Dependent on experience because you 
wouldn’t use this calculation if things were different. The proof of it is 
only called a proof because it gives results which are useful in experience. 
(Wittgenstein 1976, 40–41)

At a first glance, what we have in this passage is a version of the logi-
cal positivist position: a mathematical statement can be used synthet-
ically, as an experimental statement, or analytically, as a statement 
that can be derived from concepts and rules. But Wittgenstein adds to 
the story a temporal-causal element: first the proposition or rules of 
multiplication are adopted because they provide a successful empiri-
cal description of practical counting, weighing and measuring. Only 
subsequently, because of its a posteriori success, does it become a rule 
that no experiment can refute.

I refer to this process as “dismotivation,” indicating the gradual loss 
of a mathematical statement’s empirical motivations and grounding. 
We have already seen it at work in the previous chapter: subtracted 
numbers, which were first only subtracted from larger numbers, and 
later empirically related to debts, were isolated and carried out of these 
contexts, and turned into new independent entities: negative numbers. 
This process was so successful that things go the other way round in 
contemporary commutative group theory: when using additive nota-
tion, –a is defined as the reciprocal of a, and one doesn’t usually even 
define subtraction. If it is defined at all, a – b is defined as a + (–b), so 
negative numbers turn out to precede subtraction.

To better understand the process of dismotivation, consider Witt-
genstein’s following example:

All the calculi in mathematics have been invented to suit experience and 
then made independent of experience.

www.TechnicalBooksPdf.com



 Constraints-Based Philosophy  •  61

Suppose we observed that all stars move in circles. Then “All stars move 
in circles” is an experiential proposition, a proposition of physics. Suppose 
we later find out they are not quite circles. We might say then, “All stars 
move in circles with deviations” or “All stars move in circles with small 
deviations.”

The simplest method of describing their paths might be to describe 
their deviations from the circles. Suppose I now say “All bodies move in 
circles with deviations,” meaning [some arbitrary open curve] is a circle 
with deviation—now I am no longer making a statement of physics. It is 
now a proposition of geometry; I have made it independent of experience. 
I have laid down a proposition which provides a form of representation, a 
method of description. . . .

It is the same with 25 × 25 = 625. It was first introduced because of ex-
perience. But now we have made it independent of experience; it is a rule 
of expression for talking about our experiences. [If 25 objects weighing 
each 25 grams don’t weigh together 625 grams, we’d] say, “The body must 
have got heavier” or “It deviates from the calculated weight.” (Wittgen-
stein 1976, 43–44)

The point here is not only that we don’t need experience to validate 
the mathematical rule. We actually use the rule as a reference against 
which to measure experience. As the star orbits example shows, this can 
still be done even if reality behaves very differently from our refer-
ence rule.

Indeed, this is demonstrated by the Black-Scholes vignette from the 
introduction: the result is empirically motivated by a very specific set-
ting, and then becomes a reference point for other settings, where it 
may be very far from empirical observation. However, note that in the 
Black-Scholes case, it is hard to articulate a specific context where the 
result was validated by experience over a substantial span of time. It 
became dismotivated almost instantaneously.

There are many examples of elementary mathematics that deviate 
from the arithmetical standard: if we put together ice cubes, or drop-
lets of water, or line segments on paper, the rules of addition and mul-
tiplication need not conform to the actual empirical count. The ice 
cubes may melt before we’re done counting, the water droplets may 
pool together, several line segments may be drawn as continuous and 
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form a single segment. These deviations could be seen as affirming 
the claim that arithmetic rules are a point of reference independent of 
experience.

But can we perhaps save the relation between mathematical state-
ments and empirical experience, if we articulate more precisely the 
conditions under which the rules are empirically correct? Perhaps el-
ementary arithmetic does apply empirically, provided that we restrict 
our empirical scope to a certain way of putting objects together, which 
precludes an interaction or dissolution of the counted elements as in 
the preceding examples?

I’m afraid, however, that restricting the scope of application by pre-
cluding the interaction of counted elements will not get things quite 
right. In an electric circuit, for example, if we put units of resistance 
together in a series, simple addition will give us the total resistance. If 
we put them in parallel, it won’t. In both cases, there obviously is an 
interaction of resistances in the electric circuits, violating the “no in-
teraction” criterion. But this violation won’t prevent us from saying 
that addition applies to serial combination of units of resistance. So 
restricting the empirical applicability of addition to non interacting 
entities is too restrictive.

Here’s another example: one unit of luminescence and one unit of 
luminescence put together will measure two units of luminescence 
only if the light sources are allowed to interact. Indeed, if we keep the 
light from the two sources from interacting by an opaque barrier that 
allows each point in a room to be exposed to only one light source, 
the measured luminescence anywhere in the room will not increase 
compared to its level with only one source of lighting. In this example, 
we see that addition would apply only if we violate the no-interaction 
restriction.

In the earlier examples, the no-interaction rule proved too restrictive—
it prevented us from applying addition where we would normally like 
to apply it. But it is also not restrictive enough, even in the context of 
a simple count of discrete, inert objects. Indeed, if we are dealing with 
very large numbers, we are not likely to reach the expected arithmetic 
results by counting (we’d say there are so many objects, we’re bound 
to have counting errors). When numbers get really large, entropy con-
siderations make even mechanized counting impossible according to 
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physical principle, not only in practice (Rotman 2000, ch. 3). But we 
still adhere to elementary arithmetic, even when it bears no relation to 
counting objects.

Of course, we could attempt to fine-tune the statement of condi-
tions under which arithmetic calculations should reflect the aggre
gation of empirical objects. But I doubt that such a venture would be 
successful—it will most likely involve some vagueness of interpreta-
tion that would limit its claimed success. Even more important is the 
fact that such a venture is not considered as terribly important. In-
stead of drafting rules that determine in advance which ways of aggre-
gating objects actually fit arithmetic calculations, we more or less just 
know that addition applies empirically to those situations to which 
it turns out to empirically apply. Moreover, there are many branches 
of mathematics that have grown so distant from their applicable roots 
(abstract algebra, large cardinals) that the concern with conditions of 
empirical applicability is simply irrelevant.

Mathematical statements involve rules that may not be empirically 
descriptive, but instead set standards against which we describe em-
pirical results. Moreover, even in its applicable parts, mathematics does 
not depend on the establishment of rules that tell us when we should 
expect mathematical statements to empirically apply. I believe that 
this form of dismotivation—not a break with empirical applicability, 
but a lack of interest in exhaustive rules for the general applicability 
of mathematical statements (as opposed to concrete rules in specific 
restricted circumstances)—is one of the deepest senses in which arith-
metic is made independent from experience.

The Analytic A Posteriori

What is the status of mathematical descriptions turned independent 
of experience? Kant suggested that we consider them as synthetic a 
priori—that is, emerging from the structure of our senses, rather than 
from reason or empirical observation. I suggest that perhaps they’re 
better subsumed under the title “analytic a posteriori”: following from 
formal rules and dependent on worldly experience.

True, Kant does exclude the combination of analyticity and de
pendence on a posteriori empirical experience. He claimed that if a 
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statement is true because it is analytic, that is, because the predicate is 
included in the concept (“a triangle has three sides”), then all I need to 
validate the statement is the concept and the predicate, regardless of 
experience.

Nevertheless, structural positions abhor vacuum, and there’s a his-
tory of attempts to fill the empty box. Stephen Palmquist (1993, app. 
IV) has recorded several such attempts. One kind of statement that he 
considers as analytic a posteriori (following Saul Kripke, but rearrang-
ing his terms and definitions) is “naming.” In order to name someone, 
we need to have an experience. But once they are named, the claim 
that they are so named is purely analytic—it is included in the name 
concept of the person so named.

I think that this usage of the analytic a posteriori does not quite 
work. When I call someone by her or his name, the challenge is to 
identify time and again that the person I address by that name is in-
deed the very person so named, and not just to figure out the analytic 
truth that the name applies to the person so named. The former chal-
lenge is a synthetic and a posteriori task.

So I’ll go in a different direction (which may be closer to the articu-
lation of the analytic a posteriori in Palmquist 1993, ch. IV, §3). When 
I use the combination of analytic and a posteriori, I refer to a state-
ment that derives from synthetic a posteriori judgments but that has 
been rendered independent of experience. This reference concerns pre-
cisely the dismotivated mathematical statements discussed earlier.

One objection may be that what I am talking about is actually a 
synthetic a posteriori statement that has become analytic a priori, 
once a certain concept was formed. At no time, therefore, was the 
statement at once analytic and a posteriori. I reject this objection on 
two grounds.

The first has to do with our underdetermined use of mathematical 
statements. In some cases, it’s very clear that I use some mathematical 
statement empirically, and in others, it’s clear that I use the same state-
ment analytically, as a purely formal statement. But in many cases, the 
distinction can’t be made. When we learn that 25 × 25 = 625, we learn 
it as a statement with multiple justifications and uses. It is both the 
result of a calculation and a potential description. (I will elaborate on 
such ambiguities in the section on interpretation in this chapter.)
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But even if we restrict our attention to the analytic meaning of the 
calculation, to the way it follows from definitions and rules of calcula-
tion (which may be reducible to rules of logic, if we accept the relevant 
subset of Russell’s articulations), there’s an a posteriori element in-
volved. This a posteriori element is the actually performed calculation in 
an arithmetic or logical formalism by people or by machines. We derive 
the result analytically, and yet the derivation occurs in time and space.

Now, we are not used to thinking of the result of arithmetical oper-
ations as dependent on what we do in time and space. The result is 
considered as determined once and for all, we only gain access to it by 
calculation. Yet,

Suppose that from now on, when we were told to multiply, we all of us 
constantly got different results. Then I suppose we should no longer call 
this calculation at all. The whole technique . . . would lose the character of 
a calculation. We would then no longer in fact have a right or a wrong 
result.

The whole thing is based on the fact that we don’t all get different re-
sults. . . . [T]he agreement in getting this result is the justification for this 
technique. It is one of the agreements upon which our mathematical cal-
culations are based. (Wittgenstein 1976, 102)

A necessary condition for considering a result as mathematical is that 
we tend to agree on the result. However, what is the nature of this 
agreement? Why is it that we usually get the same result? One reason 
for getting the same result may be that this result is true. But truth is 
never a sufficient guarantee for its actual revelation. There are many 
truths that cannot be derived by a straightforward calculation.

Wittgenstein considers this very point in a dialogue with Alan 
Turing (they discuss one-to-one correlations, rather than arithmetic 
calculations):

Wittgenstein: Suppose you had correlated cardinal numbers, and 
someone said, “Now correlate all the cardinals to all the squares.” 
Would you know what to do? Has it already been decided what we 
must call a one-one correlation of the cardinal numbers to another 
class? Or is it a matter of saying, “This technique we might call 
correlating the cardinals to the even numbers”?
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Turing: The order points in a certain direction, but leaves you a certain 
margin.

Wittgenstein: Yes, but is it a mathematical margin or a psychological 
and practical margin? That is, would one say, “Oh no, no one would 
call this one-one correlation”?

Turing: The latter.
Wittgenstein: Yes.—It is not a mathematical margin. (Wittgenstein 

1976, 168)

According to this position, mathematical techniques are formed in 
such a way that natural and practical considerations (the more or less 
common capacity of humans to be trained to follow certain kinds of 
orders in similar ways) guarantee more or less consensual results. 
Derivation techniques (including calculations or proofs) that fail to 
produce such consensus are not considered mathematical.

It is in this very sense that the purely analytic derivations are an a 
posteriori feat. Human conceptual analysis is conditioned on an a pos-
teriori, natural, and social human capacity to obtain some kinds of con-
sensus by following some kinds of rules. It is in this sense that mathe-
matics is deeply analytic and a posteriori at one and the same time.

In thinking of mathematical statements as synthetic a priori, we 
consider them to be reflections of the pre-empirical formal intuition 
through which we view the world, and that leads us beyond logical 
and conceptual analysis. In thinking of mathematical statements as 
analytic a posteriori, on the other hand, we allow that they may in-
deed become so thoroughly dismotivated that they turn into logical 
facts, but we further claim that deriving logical facts through calcula-
tions or proofs depends on a posteriori common features of situated 
human practice and learning capacity, rather than on an a priori way 
of seeing things.

The analysis here places mathematical statements on a continuum 
between synthetic and analytic a posteriori. This is the continuum that 
ranges from empirical observations to following rules that are de-
signed to be followed successfully by people (or that can have people 
trained to follow them successfully). Genuine a priori, pre-empirical 
knowledge cannot depend on such contingencies of practice. Genu-
inely a priori knowledge has to be obtained by pure thought, whatever 
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that may mean, not by spatio-temporal performances of derivation 
procedures that tend to produce common results when followed by 
well trained practitioners or well constructed machines. Mathematics 
as a whole is much too dependent on empirically grounded semiotic 
activity to be confined to the realm of the a priori.

Consensus

One of the most impressive things about mathematics is that mathe-
maticians tend to agree with each other over the validity of mathe-
matical arguments. While they may strongly disagree over the im-
portance, ingenuity, or originality of mathematical statements, their 
consensus over validity is not only infinitely greater than what we’re 
used to in the humanities and social sciences, it also tends to be con-
siderably greater than the level of agreement obtained in the natural 
sciences.

This agreement is, indeed, not absolute. Mathematicians do some-
times disagree about the validity of proofs. Long-standing proofs may 
be found to be invalid after many years. Some proofs are so long and 
complex that mathematicians hesitate to rule whether they are valid 
or not. Still, in contemporary mathematics, long-standing disputes and 
errors concerning the face value validity of arguments are the excep-
tion, not the rule.

While the vast majority of mathematical everyday disputes are re-
solved by some sort of semi-formal shorthand, relying on subject spe-
cific tool boxes or inference packages (Netz 1999; Azzouni 2005) com-
bined with iconic representations, analogies, intuition, authority, and 
experience, this alone is not what allows mathematics to be much more 
consensual than other sciences. The consensus among mathemati-
cians about the validity of proofs has a lot to do with formalization. By 
formalization I do not mean the translation of an entire proof into a 
strictly formal language (which is almost never done, and is in fact 
impossible for finite humans to achieve in the context of typical re-
search mathematics). By formalization I mean a gradual process of 
piecemeal approximation of formality that is conducted only as far as 
required to resolve a given dispute. 
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The mathematical arbitration of validity disputes by means of par-
tial formalization is more accessible and conclusive than the compara-
ble means available to other sciences, and leads to a higher degree of 
consensus. This has to do with the following facts: that valid mathe-
matical arguments are those that can be split up to subarguments, each 
of which (but usually not all at once) can be formalized by trained 
professionals with reasonable effort; that the process of verifying the 
validity of formalized proofs is explicitly designed to rely only on rules 
that people can be trained to follow with similar results; and that a 
process of partial formalization serves as the supreme arbitrator in 
cases of mathematical validity disputes (even if, like the Supreme Court, 
one rarely carries dispute all the way to that final instance).

This state of affairs seems to lend plausibility to the claim that math-
ematics represents a deeper truth, or stands closer to truth than other 
branches of knowledge. How else did it happen that mathematical ar-
guments are, unlike those of other sciences, reducible to consensually 
verifiable formalizations? But the exceptional truth of mathematics 
may be put into question, if we consider the historical possibility that 
what guarantees consensus in mathematics is the active exclusion of 
arguments and concerns for which formal arbitration mechanisms 
are of no use. Mathematical consensus could arguably be the artifact 
of trimming mathematics along the dotted lines that allow consensus 
to be retained, rather than the expression of some essential mathemat-
ical trait.

Today, the final mechanism for arbitrating the validity of mathemat-
ical arguments is the rigid syntax of predicate calculus applied to for-
mal axiomatic systems (even though, I must reiterate, this arbitrator 
is not appealed to very often). Historically, it was preceded by other 
semi-formal syntaxes. As noted earlier, scholarly Greek geometers had 
their own rigid syntactic code (Netz 1999), which, as Pasch and Hilbert 
showed in their analyses of the foundations of geometry, is not quite 
a formal system in the contemporary sense. Abbacus masters had cal-
culation diagrams that generated unique solutions to various kinds of 
problems (even where today we consider these problems as having 
multiple solutions). Modernity introduced symbolic notations that set 
arguments into a uniform calculus, which in the nineteenth century 
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were gradually appropriated for the purpose of creating a calculus 
of logic.

While the appeal to formal-syntactic validity arbitration mecha-
nisms is not a twentieth-century invention, it would be wrong to con-
sider it ahistorical. Indeed in many historical mathematical cultures, 
consensus was weaker than it is today. Moreover, the strict separation 
between the validity of an argument and its importance, style, and 
ingenuity is a rather novel feature of mathematics.

Indeed, the Greek mathematical scene was a polemic one, where 
a “mathematical text is a challenge: it attacks past mathematicians, 
and fully expects to be attacked, itself” (Netz 2007, 62). The sixteenth-
century dispute between Tartaglia and Cardano/Ferrari is perhaps the 
most infamous debate in the history of mathematics. From today’s 
perspective, the main issue is Tartaglia’s precedence and publication 
rights, rather than mathematics. But if we look at the protagonists’ 
own arguments, we find that they pool together the very correctness 
of proposed solutions, the efficiency of calculations, and the elegance 
of method in their respective attacks (Bortolotti 1933). This polemical 
style of mathematical disputation might explain why juridical linguis-
tic structures were imported into mathematics at the beginning of mo-
dernity (Cifoletti 1992, 1995). Disputes that superposed mathematical 
validity, social cliques and generation gaps went well into the nine-
teenth century (Ehrhardt 2010, 2011; Wagner 2014, forthcoming). The 
Italian school of algebraic geometry was confronted with bitter and 
enduring disputes over issues of mathematical validity as late as the 
1930s (Brigaglia and Ciliberto 2004). Ever since classical Greek geom-
etry, European mathematics had a consensual mathematical core, but 
many open ended debates around it.

Predicate calculus, Hilbert’s version of the axiomatic method, and 
the Zermelo-Fraenkel set theory made mathematics quantitatively 
much more consensual than it had ever been before. They allowed 
closing more debates than had ever been possible in Western mathe-
matics. In fact, they were so successful that any question or argument 
that could not be submitted to this arbitration mechanism became 
a  nonmathematical question, and was exported to other branches 
of knowledge. This is seen most clearly in the context of the early 
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twentieth-century foundations “crisis.” Those problems that could not 
be translated into one of the emerging formal systems were not con-
sensually solved—they were expelled from mathematics and became 
philosophical.

The foundations crisis was not solved by providing a sound founda-
tion for mathematics, but by exporting the problem of foundations. 
Any axiomatic foundation became acceptable, as long as it could be 
formalized. Mathematicians no longer had to agree on a set of axioms 
and formal systems; they could simply explore several prominent op-
tions (for example, with or without the axiom of choice, with or with-
out large cardinals, Zermelo-Fraenkel versus Quine’s New Foundations, 
and so on).

There are obviously many formal systems that are not considered 
worthy of investigation, and the criteria for selecting which formal 
systems should be studied are obviously not formalizable. But it is 
clear that whatever can’t be formalized in one of the mathematically 
endorsed formal systems is no longer mathematical. Mathematics 
achieves consensus over the validity of proofs by rejecting all proof 
methods and articulations of questions that cannot undergo formaliza-
tion and submit to formal mechanisms of arbitrating disputes. (That’s 
why the liar paradox, the pop quiz paradox, and the sorites paradox 
are problems of philosophical logic rather than mathematical logic.)

Why have other sciences not achieved similar validity arbitration 
mechanisms? I believe that the answer lies in the process of dismoti-
vation. In order to allow formal systems to be the final arbitrators of 
validity, whenever formal arbitration conflicts with empirical or other 
kinds of validity tests, the latter has to be demoted in favor of the for-
mer, and the scientific claims become dismotivated. Many sciences 
could not afford to become as dismotivated as mathematics. Their em-
pirical reference had to be much more clearly defined for them to 
maintain their status as empirical sciences.

But some sciences did manage to come up with formal arbitration 
systems, even if it cost them the stability of their empirical reference. 
These branches of science were subsequently subsumed under mathe-
matics. This was the fate of such fields as formal logic that has de-
tached itself from actual reasoning, game theory that has been divorced 
from actual decision making, mathematical physics or economy that 
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do not necessarily reject make-believe models just because they don’t 
even pretend to approximate real-world phenomena, computational 
complexity that deals with asymptotics rather than finite scope re-
sults, and so on. Allowing myself to oversimplify, I might say that the 
contemporary necessary and sufficient condition of being mathematical 
is precisely the combination of dismotivation with respect to empirical 
application and potential formalization serving as highest arbitrator in 
disputes over the validity of arguments.

If this is so, then the twentieth-century increase in mathematical 
consensus and dismotivation is not simply a quantitative change. It 
is qualitative: consensus and dismotivation have evolved from a pos-
teriori features of historical mathematical languages into an analytic 
characterization that renders a science mathematical. Just as mathe-
matical statements were dismotivated from descriptions to standards 
of reference, the same happened to the very characterization of math-
ematics as formally consensual and dismotivated—it turned from a 
characterization into a defining criterion. There’s no wonder that 
mathematicians reach higher levels of consensus over the validity of 
arguments compared to any other kind of scientists. Whenever a sci-
entific language is formal enough and dismotivated enough to allow 
such levels of consensus, it becomes mathematical by definition.

But I have to qualify again. The fact that proofs can be broken down 
into pieces, each of which (but not all at once) can be more or less 
formalized by a trained professional within a reasonable amount of 
time does not mean that formalization is actually obtained. It also does 
not mean that all mathematicians know how to formalize all proofs, 
or that full research articles can be completely formalized with a rea-
sonable amount of time and effort. Mathematicians usually argue and 
persuade each other by much less formal means. However, when a 
disagreement persists, it is usually possible to pinpoint it to a specific 
subargument, and resolve it by partial formalization.

This formalization is the last arbitrator. Like a Supreme Court, it is 
rarely appealed to. Still, every once in a while, in order to sort out a 
dispute, one must partially formalize a problematic chunk of an argu-
ment in order to convince critics that it works. Yielding supreme ar-
bitration to formalization is what makes a scientific language mathe-
matical, but it does not necessarily dominate mathematical practice. 
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And despite the power of formalization to promote consensus, it does 
leave some controversies undecided. Examples include Pierre Cartier’s 
claim (Krömer et al. 2009) that the combination of set theory and cat-
egory theory lacks a consistent foundation, Claude Rosental’s (2008) 
documentation of a disputed theorem on fuzzy logic, as well as some 
other much more mundane and “low profile” disagreements between 
practitioners.

Interpretation

The stronger the authority of the formal-syntactic arbitration proce-
dures, the more semantically fluid the language becomes. Indeed, as 
empirical and other procedures lose their power to arbitrate mathe-
matical disputes, the semantic interpretation of mathematical claims 
is less committed to any specific setting, and becomes more and more 
underdetermined.

Now, one should not conclude that mathematics has no semantic 
purport. Nothing could be further from the truth. However, the seman-
tic purport of mathematics is characterized by forms of indetermina-
tion and fluidity that are hardly ever associated with mathematics, 
because of the strong impression made by the rigidity of its formal 
syntax and consensus.

I’m not referring here to Hilbert’s formalist claim that in axioma-
tized geometry we can arbitrarily replace “point, line, and plane” by 
“table, chair, and beer mug.” This arbitrary replacement is precisely 
what doesn’t happen in mathematical practice. Mathematical practice 
always has to do with some sort of semantic purport, but this semantic 
purport is not an objective reference—it is an open-ended process, as 
argued, for example, in William Thurston’s (1994) discussion of inter-
pretations of derivatives and of the importance of developing such 
interpretations in mathematical practice.

Before I explain what an open-ended process of interpretation or 
semiosis means, we should recall that “explanations come to an end 
somewhere” (Wittgenstein 2001, §1). Note that Wittgenstein makes 
this statement already in the first item of his Philosophical Investiga-
tions, long before one would expect a philosopher to make such a fore-
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closing statement (I owe this observation to Anat Matar). But he is 
right. It is a necessary fact that explanations come to an end. When I 
act on a statement, I impose a cut on the process of interpretation. And 
yet, it is also just as true of explanations that they can be resumed.

Here’s how Peirce puts it:

A Sign is anything which is related to a Second thing, its Object, in re-
spect to a Quality, in such a way as to bring a Third thing, its Interpre-
tant, into relation to the same Object, and that in such a way as to bring a 
Fourth into relation to that Object in the same form, ad infinitum. If the 
series is broken off, the Sign, in so far, falls short of the perfect significant 
character. It is not necessary that the Interpretant should actually exist. A 
being in futuro will suffice. (Peirce 1931–58, vol. 2, §92)

A sign needs an interpretant, and each interpretant becomes itself a 
sign of the same object. One often finds misinterpretations of Peirce’s 
definition of signs that shift the object together with the interpretant 
(usually based on the confusing formulation in vol. 2, §303). However, 
these readings are true in a weaker sense: the object too belongs to its 
own semiotic chain. Indeed,

The object of representation can be nothing but a representation of which 
the first representation is the interpretant. But an endless series of repre-
sentations, each representing the one behind it, may be conceived to have 
an absolute object at its limit. (Peirce 1931–58, vol. 1, §339)

As the object tends toward its absolute limit and the interpretant gives 
rise to a potentially infinite series of interpretants, 

[a] symbol, once in being, spreads among the peoples. In use and in expe-
rience, its meaning grows. Such words as force, law, wealth, marriage, 
bear for us very different meanings from those they bore to our barbarous 
ancestors. (Peirce 1931–58, vol. 2, §302)

The metaphysical divide between optimists and pessimists of scien-
tific rationality can often be drawn around the question of the purported 
objective limit. The transition from Peirce’s symbol to Derrida’s iter-
able sign is partly captured by giving up the objective limit. Indeed, 
Derrida’s notion of sign is defined by its ability to be repeated:
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[T]here is no word, nor in general a sign, which is not constituted by the 
possibility of repeating itself. A sign which does not repeat itself, which is 
not already divided by repetition in its “first time,” is not a sign. (Derrida 
1978, 246)

Now by dint of this fact of constitutive iterability of signs,

[e]very sign . . . can be cited, put between quotation marks; thereby it can 
break with every given context, and engender infinitely new contexts in 
an absolutely nonsaturable fashion. This does not suppose that the mark 
is valid outside its context, but on the contrary that there are only con-
texts without any center of absolute anchoring. This citationality, duplica-
tion, or duplicity, this iterability of the mark is not an accident or anomaly, 
but is that (normal/abnormal) without which a mark could no longer even 
have a so-called “normal” functioning. What would a mark be that one 
could not cite? And whose origin could not be lost on the way? (Derrida 
1977, 12)

I won’t try to convince skeptical readers to go all the way here with 
Derrida. I will try to illustrate mathematical semiosis, and leave it to 
the reader to decide whether Derrida or Peirce capture it better. But 
before I do that, one claim needs to be qualified: the fact that a sign can 
break with every given context does not come for free. It doesn’t just 
happen. It requires work. Someone has to cite the sign, reinterpret it, 
rewrite it, and disseminate it into new contexts. The outlets for such 
dissemination are limited and subject to competition, and sometimes 
gatekeepers or censors try to restrain the wild dissemination of signs 
beyond some preferred contexts (this is the notion of rarity in Fou-
cault 2002, 133–41). So the work of decontextualization requires effort 
and force (the long and tortuous history of attempts at—and resistance 
to—reading some of Euclid’s geometric theorems as arithmetical the-
orems is a case in point; see Corry 2013). It’s not an arbitrary game 
without constraint.

To show how shifts of meaning may take place in mathematical 
practice, I’ll make up an example involving iterated mathematical 
signs in a simple mathematical context. This is not quite a “real life” 
example following an actual historical or classroom development. This 
example is tailored for the purposes of this presentation. More realis-
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tic examples are brought in the following chapter and in chapter 6. 
Other examples that can be read in a similar light are available in 
Grosholz’s (2007) deep and undercited account of “productive ambigu-
ity” and in Fisch’s insightful work on British algebra (forthcoming). 
Byers (2007) provides a treatment of ambiguity directed at a more gen-
eral readership.

The mathematical signs we’re going to consider here are 2-by-2 ma-
trices. These are arrays of four numbers ordered in two columns and 
two rows, according to the pattern:

	 a b.
	 c d.

There are many things that a matrix can be interpreted as standing 
for. One such object is a parallelogram in a Cartesian plane. The pre-
ceding matrix can be used to describe the parallelogram whose verti-
ces have the coordinates and (0,0), (a,c), (b,d ), and (a + b, c + d ). It can 
also be used to describe a linear transformation (a combination of ro-
tating the plane around (0,0), stretching it in various directions, and 
possibly reflecting it). Specifically, this matrix represents the linear 
transformation that sends the point (1,0) to (a,c) and (0,1) to (b,d ). In 
order to simplify the presentation, I will assume that the matrices are 
positive orthonormal—that is, that the parallelograms they represent 
are unit squares, and the transformations are just rotations around the 
origin.

So far we have polysemy: several references for the same sign. The 
same matrix stands for a square and a rotation. But the fact that a sig-
nifier has several interpretations is less than interesting here, unless 
these interpretations interact. In order to get to the point of interac-
tion, let’s consider matrix products—namely, the operation:

	 a b w x  aw + by ax + bz
	 c d ‧ y z 

=
 cw + dy cx + dz.

Matrix product is an operation that takes two matrices and yields an-
other matrix. What’s important for us about matrix multiplication is 
that if X is a matrix that stands for a square, and Y is a matrix that 
stands for a rotation, then Y ∙ X stands for the square you’d get by ap-
plying the rotation represented by Y to the square represented by X.
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At this point, our two interpretations (square and rotation) relate to 
each other and interact. Mathematical practitioners interpret signs in 
different ways, and compose these interpretations. One can introduce 
many such compositions. For example, on top of the previous rota-
tion-applied-to-square interpretation of products, one can interpret 
the product of matrices as a composition of the rotations that they 
represent (the product of a matrix that stands for a 45-degree rotation 
and a matrix that stands for a 30-degree rotation will then stand for 
the combined 75-degree rotation). Both these interpretations are use-
ful in practice. But for the purposes of this motivational story, let’s 
assume that we have in mind only the rotation-applied-to-square 
interpretation.

So far, our two interpretations for matrices (rotations and squares) 
coexist; they do not compete with each other or work against each 
other. So let’s look at one more thing that we can do with matrices: 
raising them to the second power. The formula is:

	 a b  a2 + bc ab + bd
	 c d 

2

=
 ca + dc cb + d 2.

We can think of this operation as a function that takes a matrix stand-
ing for a square, and yields another matrix standing for another 
square. We can check and verify that the angle between the resulting 
square and the x-axis is twice the angle between the original square 
and the x-axis. So far, we’re just adding more operations and interpret-
ing them in coherent ways.

But what happens when we put things together? For instance, what 
happens if we note the simple fact that X 2 = X ∙ X? Here things start 
to jar. On the left-hand side, our interpretation has to do only with 
matrices interpreted as squares. We don’t need any other interpreta-
tion to read the left-hand side. But when we apply our interpretation 
to the right-hand side, we are forced to take the sign X, which on 
the left-hand side stood alone with a single intended interpretation 
(square), and impose upon it another interpretation, that of a rotation; 
otherwise, the right-hand side wouldn’t make sense in terms of the 
interpretations already available to us.

The single left-hand side X splits into two at one and the same time. 
Here we don’t just have polysemy. By setting this equality and retain-
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ing our previous interpretations, we force a shift of meaning: a matrix 
designating a square suddenly designates a rotation, because of a for-
mal equality that happens to hold. A formal manipulation combined 
with inherited interpretations forced a shift of meaning: from one sign 
and one interpretation, we turn to a reiterated sign and two interpre-
tations. We can no longer think of the left-hand X as standing only for 
a square, as we could before, because the right-hand side and the con-
necting equality sign force our second interpretation on X. The left-
hand interpretation was “contaminated” by the excess meaning in the 
right-hand interpretation. One interpretation was forced on another 
by following a formal identity.

But we have to qualify in what way this shift of meaning is forced. 
Of course, we needn’t have acknowledged any of the interpretations 
I have suggested earlier. One can do matrix algebra with many other 
interpretations, including an interpretation that views matrices simply 
as arrays of four numbers. However, here we’re dealing with mathe-
matical practice, and in practice we always work with some of the 
inherited interpretations that signs accumulated on their way to us.

Mathematics is useful and interesting because it is interpreted. In 
saying that, I am referring not only to interpretation for the purpose 
of application, but also to interpretation for the purpose of generat-
ing mathematical conjectures and proofs. I know no mathematician 
who never interprets her or his symbols when thinking about math-
ematical problems. I know no mathematician who sticks to just one 
interpretation.

In fact, mathematicians often work at one and the same time with 
formal interpretations (the matrix as a purely syntactic object) and 
several semantic interpretations (such as squares and rotations). This 
ambiguity is one aspect of the term “analytic a posteriori”: mathemat-
ical claims are ambiguously analytic and committed to a posteriori 
experience. The two interpretations do not come one after the other; 
they often intertwine.

Whenever one has an isomorphism, one has (at least) a double in-
terpretation: one in terms of the domain of the isomorphism, and one 
in terms of its range. My point is that mathematical interpretations 
can and do bump against each other to force shifts of meaning. Going 
from the left-hand side to the right-hand side of an equality, a sign 
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may change its interpretation. And this holds not only for specific 
signs, but for entire domains of knowledge as well. Analytic geome-
try, for example, is not simply two independent ways of thinking put 
together—geometric and algebraic. It is a novel geometric-algebraic 
way of thinking, which is historically distinct, and not reducible to a 
disjoint union between classical geometry and symbolic algebra (more 
on that in the first section of chapter 6).

But I want to make things more involved. I want to show how in-
terpretations strike limits. For that purpose, consider one more matrix 
operation: transposition, denoted by a superscript T. Its definition is 
simply:

	 a b   a c
	 c d 

T

=
 b d.

This operation is easy to interpret in terms of squares and rotations. 
If a matrix stands for a square, its transpose stands for the square ob-
tained by reflecting the sides of the original square around the main 
axes. If a matrix stands for a rotation, its transpose stands for the same 
rotation in the opposite direction.

Now there’s an easy theorem stating that (X ∙ Y )T = Y T ∙ X T. Let’s try 
to read this theorem in the terms of our preceding interpretations. If 
we think of Y as a square and of X as a rotation, then the left-hand side 
makes sense (apply rotation X to square Y and then reflect its sides), 
but the right-hand side involves multiplying a square to the left of a 
rotation, which is not something we’ve considered so far. (In general, 
matrix multiplication is not commutative, so we can’t just switch the 
matrices around.) If, on the other hand, we read X as a square and Y as 
a rotation, then the left-hand side no longer makes sense.

One way to deal with the issue is to offer another interpretation for 
transposition. For instance, we can stipulate that if X is read as a 
square, we should read X T as a rotation, and vice versa. Then, if we 
decide that X is a rotation and Y is a square, the left-hand side product 
X ∙ Y yields a rotated square, while on the right-hand side of the equal-
ity, Y T, a rotation, stands to the left of X T, a square, and we can maintain 
the interpretation of the product to yield, again, a rotated square.

Both sides now make sense. But given this interpretation, the equal-
ity between the two sides no longer makes sense. Indeed, on the left-
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hand side, we have a transposed rotated square, which, according to 
our interpretation of transposition, must stand for a rotation. But the 
right-hand side is simply the application of a rotation to a square, and 
is, according to our interpretation, a square. We obtain a situation 
where a rotation on the left equals a square on the right, which is 
likely to appear more objectionable than the simple claim that a single 
matrix can represent either. In a way, what we saw is that mathemat-
ical syntactic truths move faster than semantic interpretations, and 
sometimes leave them behind.

When confronted with this kind of interpretive dead-end, we can 
react in various ways. One reaction is to seek other interpretations for 
transposition and multiplication that work coherently together, and 
at the same time allow us to retain a sense of rotating squares for ap-
plication purposes. This would be a “reconstruction of interpretations.” 
Another attitude is to keep using our interpretations locally—that is, 
to change our interpretations of multiplication and transposition as 
we go along, even if it means that X or transposition is interpreted in 
more than one way across a single sign of equality. One can refer to 
this as “superposing interpretations.” Another strategy is to set inter-
pretations (in terms of squares or rotations) aside for a while, and bring 
them up only opportunistically, in specific locations where they are 
actually useful. This might be called “deferring interpretation.”

All these approaches have productive roles in mathematical prac-
tice. Mathematics is practiced through and across reconstructions, su-
perpositions, and deferrals of interpretations. These processes never 
come to an end, because formal manipulations never come to an end. 
Things only get more and more involved, and the previous example 
traces only a few initial steps in a web of semiosis.

There’s yet another strategy, of course, more respectably philo-
sophical: to seek an all-encompassing ontological grounding or logical 
reconstruction. I doubt that this can be a successful effort, but the 
important point is that mathematics does not require a global ground-
ing. Mathematics works in practice across, against, and in conflict 
with locally reconstructed, superposed, and deferred interpretations.

There are many mathematical languages where handling conflict-
ing interpretations is a challenge that has to be dealt with carefully in 
order to avoid spinning into senselessness. However, as the arbitration 
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over the validity of mathematical arguments is increasingly assigned 
to a syntactic formalization, the need to manage interpretations co-
herently becomes less urgent, and semiotic fluidity is subject to ever 
diminishing constraints. This is how syntactic rigidity supports seman-
tic fluidity.

But what happens when we leave mathematics? Can’t we say at 
least that at the moment of extra-mathematical application, there is 
a definitive collapse into a single interpretation? Well, suppose a pro-
grammer used a certain matrix to designate a certain square, to be 
displayed and rotated on the screen. Has interpretation come to an 
end? Not quite. The code is to be processed by a certain compiler, then 
executed on a certain machine, and eventually output onto a certain 
medium. Anyone experienced with the endless machine-specific vari-
ations that can ensue is well aware that interpretations have not yet 
come to an end.

And when we finally observe the square rotate on some LCD screen, 
has interpretation now finally come to an end? It has not, at least not 
as long as someone is there to observe the rotating square and inter-
pret its movement: experience it aesthetically, derive information from 
the display, act on whatever the rotating square prompts them to do, 
and so on. And things needn’t end there. This experience may be re-
membered, recalled, evaluated, recounted, recontextualized; it may 
instruct us, reproduce itself in future experiences, enter chains of inter-
pretive expectations and habits—in short, interpretations, like expla-
nations, don’t have a well-determined end. They must factually come 
to ends, but any given end is open to future resumption.

The preceding example assumes that we actually leave mathemat-
ics. In fact, as captured by the term “analytic a posteriori,” it is never 
finally decided whether an interpretation carries a sign outside math-
ematics. When I interpret a matrix as a square, is the square no longer 
mathematical? It depends. A square on an LCD screen may well be an 
empirical object of observation. But it may just as well be a mathemat-
ical object.

Indeed, according to Wittgenstein “the sentence ‘The figure I have 
drawn here . . . ’ may be used either mathematically or non-mathemat-
ically” (1976, 117). For Wittgenstein, whether the square is inside or 
outside mathematics depends on how we operate with it. If our deal-
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ings with the square set standards (say, if we state that the square’s 
diagonal divides it into two congruent parts, regardless of what empir-
ical measurements of the LCD screen suggest), then the square is still 
mathematical. If our dealings with the square are more empirical or 
pragmatic (say, we actually measure the two halves of the square and 
proceed based on the result of this measurement, even if it suggests 
a discrepancy), then, according to Wittgenstein, we’re no longer inside 
mathematics.

There’s nothing in the square itself that forces us to use it either 
way, that forces us in or out of mathematics. Our interpretation may 
oscillate in and out of mathematics in ways that might question the 
topology of these in/out relations. Our understanding of the square 
can remain undecidedly analytic and a posteriori. Mathematical inter-
pretations do not necessarily mark clear boundaries of final interpre-
tations or ways out of mathematics.

This open-endedness is not the margin of mathematics. It is its de-
centered center, its characterization as a combination of semiotic dis-
motivation and syntactic validity arbitration. Even if mathematics is 
considered as geared not toward practice, but toward some ideality, a 
mathematical practice that does not involve reinterpretation is a prac-
tice that is bound to become outdated, once a given interpretation is 
rendered obsolete by traveling—historically, culturally, intersubjectively—
across our evolving life worlds.

Reality

The debate concerning the reality of mathematical objects is orga-
nized around two main arguments. The basic objection to the claim 
that mathematical objects exist as independent abstract entities is 
the problem of our spatio-temporal access to abstracta. The main ob-
jection to the rejection of the reality of mathematical objects is the 
problem of how these made up entities become involved in applicable 
knowledge.

Lately, two interesting arguments have been put forth that recon-
figure the problem. Emily Grosholz (2014, forthcoming) suggested that 
even if we had full access to mathematical objects by means of a 
“maths genie,” we’d still be unable to account for our mathematical 
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knowledge. She imagines Fermat asking the genie for the proof of his 
famous last theorem. But what is Fermat asking for precisely? He ob-
viously can’t ask for Wiles’s proof of the Taniyama-Shimura conjec-
ture, because he can’t even imagine the mathematical objects involved. 
If, on the other hand, he’s asking for something more open ended, 
how would the genie respond? Which of the many possible mathe-
matical paths to a proof of Fermat’s last theorem would he present? 
And which criteria of validity should he adhere to, given the gap be-
tween Fermat’s criteria and contemporary ones? Having access to the 
totality of mathematical objects, relations and criteria of validity, would 
he have to produce this unbounded mass as a whole?

Grosholz’s point is that our mathematical knowledge depends on 
our historical and contingent formation of mathematical problems, 
not just on access to mathematical objects. Even if we believe in the 
independent reality of mathematical entities, our mathematical knowl-
edge is a tentative and underdetermined exploration of an evolving 
mathematical landscape. The fact that two expeditions climb the same 
really existing mountain and reach the same really existing peak doesn’t 
mean that they travel the same trail, see the same view, share the same 
experience, or interpret it in the same way. To explain mathematical 
knowledge, we need to account for the historicity of problems, repre-
sentations, and interpretations, and not just rely on the fact that math-
ematical objects are out there and can be somehow accessed.

The second argument comes from Penelope Maddy (2011, ch. 4, §2). 
She points out that the problem of mathematical applicability is not 
solved by the reality of mathematical objects. Early modern mathe-
matics was constrained to a large extent by its relation to physics. 
Today, this relation has lost its formative status, as mathematical de-
velopment is constrained by intra-mathematical requirements for 
mathematical richness and productivity (Maddy 2007). The unexpected 
emergence of empirically applicable results from a quest motivated by 
intra-mathematical concerns is not reducible to the objective reality of 
the mathematical objects discovered along the way. Indeed, the fact 
that something is real doesn’t explain its emergence from the internal-
ist constraints of a discourse that’s foreign to its context of empirical 
application. (For Maddy’s own explanation of applicability, see her 
2007, 329–43; my take is available in the closing section of this book.)

www.TechnicalBooksPdf.com



 Constraints-Based Philosophy  •  83

So in Grosholz’s terms, even if we solve the realist access problem, 
we have not given a proper account of how human mathematical 
knowledge works. In Maddy’s terms, even if we assume the reality 
of  mathematical objects, we have not given a proper account of 
mathematical applicability. The actual tasks of realist philosophers of 
mathematics turn out, then, to be surprisingly close to those of anti-
realists: explain how mathematical knowledge evolves, and how the 
intra-mathematical constraints on its evolution produce results that 
are relevant in seemingly unrelated empirical applications.

It is interesting to note that Grosholz and Maddy are both friendly 
to some versions of realism—they both reject the view that mathema-
ticians simply make things up as they go along, independently of ob-
jective mathematical constraints. It is also important to note that their 
articulations of mathematical existence and truth focus on empirical 
science as their point of reference.

As a result of this reference point, when Maddy considers the exis-
tence of mathematical objects and the truth of mathematical state-
ments, her models are empirical scientific existence and truth. She 
compares and contrasts the older, empirically constrained mathemat-
ical methods and norms to the intra-mathematical quest for depth and 
richness that in her view constrains contemporary mathematics. She 
finds that a philosopher who embraces a holist and continuous ap-
proach to science and mathematics is likely to extend the empirical 
notions of existence and truth to contemporary mathematical objects 
and theorems. A philosopher who emphasizes the difference between 
the older and newer mathematical methods and norms, on the other 
hand, may rule that empirical scientific notions of existence and proof 
are distinct from those of mathematics.

For Maddy, the choice between the two options is a more or less 
conventional decision about the extension of old terms to a somewhat 
related new context—a context not covered by the old terms’ original 
articulation, but not entirely disjoint. The concern over existence and 
truth in contemporary mathematics is therefore not about verifying 
whether the old meanings of these philosophical terms apply to con-
temporary mathematics; rather, it is about deciding whether we should 
enrich these old meanings so as to conform with contemporary math-
ematics, or confine them to their original context.
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But existence and truth do not derive their meaning only from the 
analytic philosophy of empirical science. If we want to confine our-
selves to the context of empirical scientific existence and truth, we 
might as well ask whether mathematical objects and claims are “sci-
entific,” rather than whether mathematical objects “exist” and mathe-
matical claims are “true.” If, on the other hand, we do not wish to focus 
on the context of natural science, we should shift our attention from 
empirical existence and truth to other manifestations of reality. This is 
where I’m heading next.

Constraints

It is obvious that mathematics as a social endeavor is real. Beyond the 
debated existence of mathematical objects and truth of mathematical 
claims, there lies the undisputed reality of mathematical institutions 
and practices: university departments, mathematicians, journals, pub-
lications, interdisciplinary collaborations, mathematical modeling, con-
ferences, professional societies, grants, teaching, media coverage, pop-
ular representation, and the politics of research and higher education. 
All these things make mathematics very real. (One might even go as 
far as saying that if one is willing to accept objective mathematical 
abstracta, then the social abstracta that might be involved in the pre-
ceding list could serve as an ontological means to access mathematical 
abstracta!)

The reality of these mathematical institutions and practices imposes 
strong constraints on mathematical objects and statements. Indeed, in 
the first couple of sections of this chapter we saw how classical math-
ematical objects and statements function in the span that stretches 
from empirical descriptions to standards with respect to which we 
describe things—the span subsumed under the titles “dismotivation” 
and “analytic a posteriori.” Functioning within this epistemological 
span imposes constraints on mathematical objects and statements, as 
they have to fit into it.

Contemporary mathematical objects and truths are further con-
strained by the arbitration of partial formalization, which, as we saw 
earlier, plays a key role in enabling mathematical consensus and the 
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fluidity of its interpretations. Indeed, mathematical knowledge should 
be translatable into a family of formal languages that get real existing 
mathematicians to agree on whether one thing follows from another. 
These languages, in turn, are constrained by the sociological and cog-
nitive human capacities to be trained to follow only certain kind of 
rules in very similar ways. This constraint significantly narrows the 
kind of claims that mathematics can state.

Mathematical objects and truths are also subject to the constraints 
of interpretability and representability (explored earlier in this chap-
ter) that allow real existing mathematicians to actually explore them, 
as this exploration is never reducible to purely formal languages. 
Mathematical practice depends on reconstruction, superposition and 
deferral of interpretations. The conflicting interpretations involved are 
not (only) a logical impediment, but (also), as we noted earlier, a pro-
ductive force in mathematics. These translatability and representability 
impose further constraints on mathematical objects and statements.

Moreover, contemporary mathematical objects and statements are 
constrained by informal notions of maximizing mathematical produc-
tivity and depth, similar to those invoked by Maddy. This is a very real 
constraint. Maddy believes, for example, that this kind of constraint 
is likely to guide mathematicians to discover and endorse new math-
ematically productive axioms that will eventually decide such state-
ments as the continuum hypothesis, which is independent of the cur-
rent standard axioms. This last prediction seems to follow from Maddy’s 
focus on a certain school of set theorists, but generally related intra-
mathematical productivity constraints hold in a much larger context.

Another constraint has to do with the web of inter-communal 
cross-domain mathematical relations. Even in mathematical cultures 
where consensus subsists, a group of mathematicians that would pre
sent objects and claims in ways that do not interact in interesting ways 
with those of other mainstream groups is not likely to be published or 
cited. Their mathematics is not likely to evolve and leave a mark. As 
Stav Kaufman (2016) put it in a highly sober case study analysis, “the 
community’s response takes part not only in the selection of prob-
lems, but also in the shaping of the results themselves,” in the sense of 
articulating them in terms relevant to different mathematical  com-
munities. (For a more general conception of mathematics as a social 
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phenomenon, see Ernest 1998.) This constraint therefore imposes its 
own limit on mathematical evolution.

It is important to note that the considerations that constrain math-
ematical development cannot be neatly separated into institutional 
versus purely mathematical. The unbounded span of formally correct 
assertions is meaningless as an undifferentiated whole. Mathematical 
objects and statements make sense only when interpreted and orga-
nized with respect to other mathematical, worldly, and human entities. 
This organization of knowledge can be read in terms of the intra-
mathematical impact of some statements and objects on our access to 
the formation and proof of others (an old-school history of mathemat-
ics), in terms of the open-ended historical dialectic of mathematical 
problems (Cavaillès 1994; Lakatos 1976), and in terms of interpretive 
negotiations over mathematical meaning between different groups of 
mathematicians (social construction of knowledge). Either way, the 
evolving organization of knowledge imposes strong constraints on 
what can surface as a mathematical issue.

But the social infrastructure goes even deeper. Historians and so-
ciologists of mathematics teach us that contemporary mathematical 
objects and claims are constrained by systems of exchange, institu-
tional hierarchies, and material means of production that enable math-
ematicians to critically assess each other’s efforts and reach agree-
ment concerning validity. These economic constraints and their impact 
are analyzed from a game theoretic point by Paul David, who suggests 
that changes in early modern structures of funding for scientists trans-
formed scientific culture from secretive and conflicted to more open 
and consensual (David 2004, 2008; Høyrup 2008 supplies an interest-
ing case study in the context of the abbacus culture). The contempo-
rary working of mathematical communications is documented in an-
thropological investigations such as Rosental (2008) and Barany and 
MacKenzie (2014). Without such conduits and constraints, mathemat-
ics may return to be just as polemical as it had been in many of its 
historical manifestations—polemical not only about what’s important 
or interesting, but also about what is mathematically valid, producing 
a lot of what (from our point of view) would be odd mathematics. Such 
polemic had significant impact on the content, role, and position of 
mathematics in various historical systems of knowledge.
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Social and political contexts affect mathematical knowledge in other 
ways as well. In the first chapter, we examined the controversy over 
infinitesimals with its religious and authoritarian overtones (Alexan-
der 2014). Today, grant-giving institutions (national funds, military 
research funds, private funds, corporations) can influence the internal 
organization of mathematics. This does not mean that some conspira-
tory cabal makes up mathematical knowledge according to its political 
whim. It does mean that the many constraints imposed on the evolu-
tion of mathematical knowledge cannot be disentangled into purely 
internal versus social.

One might try to distinguish constraints that are forced on us no 
matter what (“If I jump off this ledge, I’ll crash onto the ground”) from 
ones that depend on society or ourselves (“If you don’t speak our lan-
guage, no one will understand you,” or “I must do what I believe is 
morally right”). But, in fact, all these constraints can be circumvented: 
(“If I jump off this ledge, I’ll crash onto the ground, unless I grasp onto 
something”; “If you don’t speak our language, no one will understand 
you, unless you get an interpreter”; “I must do what I believe is morally 
right, unless I’m willing to deal with the guilt and consequences”). The 
only forces that are “truly” inescapable are those that have been dis-
motivated and rendered analytic a posteriori: I can’t escape gravity or 
the fact that 2 + 2 = 4, because whenever I come up with a clever set-
ting where they seem to have been escaped, adherents of arithmetic 
and physics can dismiss my counterexamples by saying that I did not 
understand correctly their empirical purport. (I discussed arithmetic 
examples at the beginning of this chapter; for the context of the laws 
of physics, see Cartwright 1983.) The continuum of natural-social con-
straints is real, regardless of its internal divisions.

In fact, all the historical-philosophical problems reviewed in chap-
ter 1 can be seen as constraints: tying mathematics to natural phe-
nomena or to independent thought, designing math as a sui generis 
source of knowledge or reducing it to others, allowing it to entertain 
monsters or forcing it to do away with them, aligning it with this or 
that authority—these are all competing constraints that mathematics 
engages as it evolves in different settings. Adherence to one constraint 
over another reflects a certain cultural preference that shapes mathe-
matics in its image.
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The point is that the continuum of constraints that form mathemat-
ics is real in that it sets limits to what can emerge as mathematical. In 
fact, the conjunction of these constraints is so strong that sometimes 
only a single possible result can successfully negotiate them. Mathe-
matics is the result of organizing and prioritizing these and other con-
straints in a manner that establishes a viable system of knowledge that 
can survive in given times and places. And different times and places 
can yield different real mathematical cultures, concepts and claims.

When viewed from this perspective, mathematical reality is com-
parable (and contrastable) with the reality of many other branches of 
knowledge, including those that are not answerable (or fail to answer) 
to scientific norms and standards. Maddy’s favorite examples are as-
trology and theology, and I would add my own heretic creed: post-
structural philosophy. Such institutions of knowledge are very real, 
and their postulated objects and statements are highly constrained, 
even when these constraints are not continuous with those that shape 
empirical scientific existence and truth, and even where they leave 
practitioners with significantly more freedom.

The following should be considered trivial, but this triviality is not 
reflected by current philosophy of mathematical and scientific knowl-
edge: no institution of knowledge simply makes up things as they go 
along. The popular image of social construction as a bunch of people 
coming up with some mutually agreed mumbo-jumbo is nothing but 
a pastiche. (The satirical website The Onion had a great piece mocking 
this absurdity, titled “Historians Admit to Inventing Ancient Greeks.”)

Like mathematics, institutions of knowledge make projections and 
provide guidance to people in ways that are integrated into their forms 
of life. As in mathematics, these projections and guidance are not al-
ways empirically successful, and the various branches of knowledge 
have to account for these failures. These accounts can’t be too general 
or too trivial. Indeed, if theology or mathematics could only justify 
themselves by such generic claims as “divine justice is served—if not 
here, then in the afterlife” and “2 + 2 = 4—if not here, then in the ab-
stract realm of number,” then we might take theology or mathematics 
less seriously. We could claim that bad deeds are punished simply due 
to social convention, or that 5 dollars and 7 dollars are 12 dollars sim-
ply because that’s the result imposed by the algorithms implemented 
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and forced on us by banks. But if theology and mathematics survive, 
it is because they can sometimes provide more compelling accounts for 
their successes and failures and cast more robust nets of sense making 
coordinates.

A doctrine may be invented or initiated by a single person, but the 
real existence of a distributed branch of knowledge cannot be reduced 
to such an authority, even if it wields strong repressive powers or 
manifests exceptional charisma. Branches of knowledge that survive 
are highly constrained by a complex network of material circum-
stances and cultural roles. They are entangled into politics, social psy-
chology, and empirical reality. An incredibly complicated conjunction 
of realities must be present in order to create, disseminate, and main-
tain a branch of knowledge that really exists over large spans of space 
and time—be it mathematical or theological knowledge.

One of mathematics’ most impressive and seemingly unique features 
is its consensus, which makes it seem more real than other branches of 
knowledge. But in order to evaluate this consensus, imagine a largely 
consensual group of theologians that have their best students sent to 
establish mutually independent subsidiaries. Are the different schools 
likely to maintain consensus, or are they likely to establish divergent 
tenets? How would these theologians fare compared to mathemati-
cians in a similar situation?

The knee-jerk reaction of a person who, like me, grew up in a secu-
lar pro-scientific environment is to claim with certainty that the math-
ematicians are much more likely not to conflict, even if their research 
goes in very different directions. But my point is that this consensus 
cannot be derived from the truth of mathematical claims, even if such 
truths were out there. Just because something is out there, doesn’t 
mean we’re going to get it. Mathematical consensus has to do with the 
constraints surveyed in this chapter. If the mathematical subsidiaries 
in our hypothetical situation would weaken the system of dismotiva-
tion, formal arbitration, and fluid interpretation, if their material con-
ditions would preclude certain structures of communication and ex-
change, if their subsistence would depend on a different economic 
arrangement, they may become very polemic. In such cases, we may 
say that they’re no longer doing (good) mathematics, but that just re-
flects our analytic a posteriori definition of what mathematics means 
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(namely, that mathematics is a discourse that achieves consensus by 
relying on the supreme arbitration of formalization according to rules 
that can have people trained to follow them consensually). That does 
not reflect, however, the many historical cultures that we recognize as 
engaged in mathematical practice due to their historical continuity and 
family resemblance with respect to our own mathematical culture.

The bottom line is that general questions concerning the existence 
and truth of objects and statements carry notions of existence and 
truth, which reflect the constraints of some given domain, into differ-
ent contexts subject to different constraints, in ways that make our 
answers rather contingent. Instead of trying to pull the conceptual 
blanket of existence and truth across too many domains, the philoso-
phy of mathematics might want to study the specifics of the contin-
gent pools of constraints that make mathematical objects and state-
ment non arbitrary and sometimes even uniquely determined.

This approach would allow us to compare mathematical truth and 
objectivity constraints with those imposed on other, not necessarily sci-
entific, branches of knowledge. As a result, this kind of analysis would 
be much more useful for our evaluation of the unique position and 
merits of mathematics inside our institutional system of knowledge.

Relevance

Let’s consider the problem of mathematical reality from another angle. 
Our starting point will be Putnam’s (2004) version of realism. In this 
version, Putnam rejects the referential objectivity of mathematical en-
tities and allows for the relativity of truth with respect to linguistic 
articulations. For example, what counts as a single object in a certain 
language might not count as an object in another, and so the existence 
of objects may turn out to be relative to the specific language used and 
to schemes of translation.

Still, according to Putnam, truth goes beyond the rules of articula-
tion and derivation in specific languages. He acknowledges a register 
of “conceptual truths”—namely, those for which “it is impossible to 
make (relevant) sense of the assertion of [their] negation” (Putnam 
2004, 61). Putnam’s examples of conceptual truths include simple log-
ical truths such as statement that fit the template p → q ≡ (∼q) → (∼p)  
and mathematical statements such as 2 + 2 = 4.
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To clarify that his notion of conceptual truth embraces fallibility, 
Putnam insists that these truths can be refuted by coming up with a 
(relevant) context in which their negation does make sense. His exam-
ple (2004, 61–62) is how Riemannian geometry debunked some of the 
elementary truths of Euclidean geometry (for example, the sum of an-
gles in a triangle equals two right angles) from their status as concep-
tual truths by giving sense to their negations.

The catch is, I believe, the bracketed term: “(relevant).” What about 
all those cases, discussed in the opening section of this chapter, where 
elementary arithmetic doesn’t hold empirically (water drops, very 
large numbers)? What about addition modulo 3, where 2 + 2 = 1? Why 
are these exceptions not relevant, whereas Riemannian geometry is? 
More precisely, for whom, and in which contexts, is the latter relevant 
while the former is not?

One could argue that light rays were thought to obey the laws of 
Euclidean geometry, and then turned out to obey the laws of Rieman-
nian geometry. This produced an interpretation of the sum of angles 
in triangles that negated the Euclidean interpretation, and was clearly 
relevant for some scientists, and indirectly for many people who use 
advanced technologies such as GPS. On the other hand, we can’t claim 
that we used to think that two apples and two apples made four apples, 
but later found out that they make five in some scientifically relevant 
context. There have always been things that didn’t add up in line with 
2 + 2 = 4, but this is not what Putnam means by “relevant,” because his 
articulation of relevance is restricted precisely to the kind of context 
where 2 + 2 = 4 has been considered true.

However, as we saw at the beginning of this chapter, the context for 
which basic arithmetic is considered true is not well defined in ad-
vance, and so we risk a circular definition of “relevant” as referring to 
those, and only those contexts, where basic arithmetic keeps holding 
(instead of the contexts that obey a certain set of requirements that 
seem to guarantee arithmetical truths). This approach would confine 
us to an infallible analytic a posteriori realm, which is not what Put-
nam is after.

In reality, different contexts would be “relevant” for different peo-
ple in different times and places. Indeed, for many people light rays 
and GPS are not relevant at all; for others weird ways of counting may 
become relevant, as they suddenly figure out, contrary to what they 
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have always believed, that in the context of managing their business, 
2 + 2 may turn out equal to 3.8 due to the law of diminishing returns 
or bulk purchase discounts.

I believe we have no articulation that specifies in advance what 
would be relevant and what would not. Yet it is crucial that Putnam’s 
conceptual truth hinges on a notion of relevance. It is crucial, because 
it means that different articulations of relevance may commit us to 
different articulations of truth.

Suppose, for example, that we accept Wittgenstein’s claim that 
mathematical statements are constrained by their role as standards 
with respect to which we describe, rather than as descriptive state-
ments. In that case, “relevance” is not about the existence of an em-
pirically descriptive interpretation, but rather about integration into a 
system of standards with respect to which we describe empirical obser-
vations (as, for example, the Black-Scholes formula from our opening 
vignette is a relevant standard for practitioners without necessarily 
being a very successful empirical description of option pricing). As 
our host of empirical descriptions change along with our changing 
instruments and representations, so can old mathematical standards 
of description become obsolete, and others become relevant.

Maddy’s account takes us in a different direction. According to her 
view, mathematical objects and statements are constrained by the in-
tra-mathematical goal of enriching and deepening mathematics. So 
again, “relevance” is not about an empirical interpretation, but rather 
relates to the goal of mathematical productivity.

So following Putnam, but considering the overall web of constraints 
imposed on mathematics, the truth of a mathematical statement turns 
out to hinge on the relevance of its interpretations (or the interpre
tations of its negation) with respect to the different constraints that 
shape a given mathematical culture—for example, empirical adequacy, 
standards of description, internal productiveness, or any of the con-
straints pointed out in the previous section. But the bottom line is that 
the truth of a mathematical statements hinges on its relevance to a 
nonmonolithic set of constraints.

To appreciate the force of this articulation of truth, take the follow-
ing counterfactual example. Imagine an intelligent marine culture that 
lives in areas of very strong currents. For this culture, hydrodynamics 
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is the most relevant mathematical-physical reality. And, due to natural 
selection, calculating elementary hydrodynamic projections is as easy 
for these marine creatures as is counting on fingers for us (say, they 
literally generate small controllable currents with their limbs and feel 
the results of their combinations with their sense organs). Based on 
this intuitive capacity, they develop a sophisticated and practical hy-
drodynamic calculus.

On the other hand, living in an environment of strong currents and 
having their sense organs and cognition shaped by this environment, 
doing one-one correlations is practically impossible for them. For 
them, trying to correlate two sets of four objects (even in their minds) 
is as impossible as trying to correlate two large sets of flickering fire-
flies would be for us. They do not perceive reality as analyzable into 
discrete constitutive elements, but as gestalts of currents. As a result, 
these marine creatures have no discrete arithmetic in our sense of the 
word. They have very different notions of quantity, mathematics, and 
computability. (If you want to think of a less counterfactual example, 
think of animal sensing and cognition, but here I’d like to imagine some 
highly intelligent culture.)

Suppose the computational richness of their ways of doing math 
is comparable in scope (if not identical in content) with what we can 
model with our discrete mathematical logic. Perhaps they can even 
efficiently solve problems that we find intractable, and vice versa. (This 
wouldn’t be unthinkable, given that the quantum computation model 
and some DNA computation models can solve problems that Turing 
computing would take too long to deal with, or, being less exotic, that 
for certain problems in certain size ranges, computing based on dedi-
cated hardware is sometimes more efficient than implementation on 
an all-purpose digital Turing computer.)

Now suppose humans meet these marine creatures, and—being cer-
tain, as humans often are, that their way of seeing things is better—try 
to teach them elementary arithmetic. Since the marine creatures’ 
senses are not designed to follow, it’s probably going to be very diffi-
cult. Perhaps the humans may be able to do this indirectly, by provid-
ing the marine creatures with instruments that rely on arithmetic to 
make relevant predictions—for example, an instrument that counts 
and compares the number of food portions to the number of eaters in 
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order to determine whether there’s enough food—instead of the ma-
rine creature’s indigenous practice of swimming around the food and 
the eaters and deriving their estimate from the resulting currents.

Maybe, based on the human’s predictions and instruments, the ma-
rine creatures might come up with some tentative theories of what 
discrete numbers might be and how they might work, based on all 
sorts of turbulence models. (After all, if we can generate continuous 
models of discrete phenomena, perhaps they could too.) But perhaps 
not. It is most likely that humans won’t be able to communicate on a 
high level with creatures who can’t count discrete objects. Too much 
of our language and life form depends on that capacity.

In the latter case, it may be as true for the marine creatures that 
empirical one-one correlations have no stable results, as it is true for 
physicists that quantum states are not univalent before they’re mea-
sured. The rejection of the notion of one-one correlations between sets 
of objects would probably survive indefinitely in their culture. The 
reality of discrete numbers and the truth of elementary arithmetic may 
simply not be relevant for these marine creatures. They may not be 
able to give our arithmetic a relevant and sensible interpretation (as, 
perhaps, we of theirs).

If this is so, then numbers will simply not exist for these creatures—
at least as long as we impose on the term “exist” the criterion of rele-
vant sense making. It is in this sense that the conceptual truth of 
mathematics depends on relevance. The same can work the other way 
round: their concepts and methods may be inaccessible to our con-
strained embodied cognitive capacities and technologies.

Of course, one could object that even if the marine creatures don’t 
know it, arithmetic truths are relevant for them. Suppose that if any 
of these marine creatures ate 10 blowfish, they would die. Then it’s 
obviously relevant for them that they shouldn’t eat 4 blowfish, and 
then another 6 blowfish. So numbers and arithmetical truths such as 
“4 + 6 = 10” are relevant for them, even if they can’t figure it out. But 
in fact, from the marine creatures’ point of view, what’s relevant is 
that the flows correlated with what they would articulate as such 
bunch of blowfish (which approximate what we’d call 4 blowfish) and 
then such other bunch of blowfish (approximately corresponding to our 
6 blowfish) mark danger. Identifying these flows does not necessarily 
require a notion of numbers—it may depend on something unique to 
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how water flows around blowfish. Our abstraction of a notion of num-
ber from collections of different kinds of object is not vindicated by 
the fact that one shouldn’t eat 4 blowfish and then another 6. Just 
because we think in these terms, doesn’t make them relevant for the 
marine creatures.

Now, let’s turn back to humans. When assessing the pragmatic re-
ality of mathematics, that is, how it makes relevant sense to humans, 
we must consider two facts. First, that inter-translatable forms of 
higher mathematics have evolved and disseminated among many dis-
tinct cultures whose elites were affluent enough to dedicate time to 
abstract knowledge. This means that mathematics makes sense on a 
more than local level. Second, we should consider that higher mathe-
matics is extremely difficult to teach and is nearly ungraspable to many 
humans. Indeed, among the topics taught in schools, mathematics is 
probably the one getting the most teaching hours and least level of 
understanding, at least according to people’s self assessment.

Mathematics is crucial for our technological life form, but is acces-
sible in all but an elementary form to a small minority alone. Higher 
mathematics is real to most humans only due to their vaguely success-
ful communication on the subject with the representatives of the cul-
ture of higher mathematics. I think these observations are important 
for estimating the kind of relevance that the reality of mathematics has 
in a human context.

We could claim that this last articulation is irrelevant, because for 
mathematics to be universally real, it is enough that some (actual? 
possible? human?) culture can attain it, regardless of unsuccessful stu-
dents and counterfactual marine creatures. But then we risk bestowing 
too much reality on highly suspect forms of knowledge just because 
some bunch of weird people managed to hold on to them sometime, 
somewhere. Again, as earlier, if we restrict the term “knowledge” to 
that which is obtained by scientific methods and norms, this risk may 
be circumvented; but, again, if this is our path, we might simply ask 
whether mathematics obeys scientific norms, rather than confront 
it  with ambiguous and dangerous terms such as reality, existence, 
and truth.

If, however, we prefer to follow the relativity of relevance suggested 
here, then existence and truth end up reflecting how specific con-
straints on knowledge formation are relevant to specific forms of life. 
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These constraints belong to a continuum that spans human and non 
human physical reality, cognitive capacity, practices with tools, and 
social constraints. The more relevant a certain system of constraints 
and the more force it applies on us—the more reality or objectivity or 
truth we can assign to the resulting objects and statements. Reality, 
objectivity, and truth become, then, relational concepts ranging over 
a continuum, rather than binary universals. Mathematics can be more 
real to one kind of life form than to another, and entirely unreal to 
a third.

These relational notions of reality are not simply made up on whim; 
they depend on constraints that wield a real force. Making up these 
constraints or doing away with them may be extremely difficult or 
entirely impossible for a given life form (or to any life form of which 
we can make relevant sense). Heading in this direction, the philosoph-
ical task would involve an analysis of how sets of constraints include 
or exclude interpretations that make relevant sense of some assertions 
to some forms of life. Philosophy may then be about renegotiating con-
straints in order to find new ways of making relevant sense, or analyz-
ing the force of constraints that we can’t successfully renegotiate or 
remove.

If we think in this way, then our judgment concerning instituted 
branches of knowledge shifts from epistemological and ontological 
grounding to pragmatic, ethical and political considerations. The main 
concerns then become: To what extent can we impose or escape a 
given system of constraints? Do these constraints yield something 
useful? Do they serve the common good? No matter how real mathe-
matics (or, say, religion) is, the mathematization (or deification) of our 
culture and science imposes constraints on what we say and do, and we 
should judge mathematization (or deification) based on our capacity 
or incapacity to handle these constraints, and on the impact of these 
constraints on people’s lives.

I can’t rule out philosophical attempts to discuss constraints that 
would apply to a large set of life forms, or even to all (relevantly) 
imaginable life forms, yielding, in turn, some sort of more or less uni-
versal truths. But I’d rather we focus on more pragmatic considerations 
of those constraints that have to do with more concretely relevant set-
tings, such as human mathematics.
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Conclusion

The first chapter of this book narrated histories of the philosophy of 
mathematics around four formative axes. In order to wrap up the cur-
rent chapter, I’ll try to see how the conceptions presented here work 
in terms of the preceding narratives.

The first narrative contrasted natural order and conceptual free-
dom. Is mathematics committed to one or the other? The account of 
dismotivation and the analytic a posteriori is meant to reflect on this 
issue. Mathematical knowledge formation is a process that is some-
times committed to our empirical observations of natural order, but at 
other times shapes our understanding of natural order by setting stan-
dards for describing natural phenomena.

Still, as expounded in the sections on interpretation, consensus, 
reality, and constraints, empirical observation has no exclusive au-
thority over mathematics. Mathematics develops its interpretations, 
arbitration mechanisms, and other constraints in relation to various 
social, practical, and cognitive circumstances, evolving away from 
natural application.

This does not mean that mathematics has become conceptually 
“free.” Even if today most of the constraints imposed on new mathe-
matics have little to do with empirical observation, these constraints 
are tangibly real. There’s obviously still a large measure of contingency 
in the evolution of mathematical knowledge, but the various con-
straints shape mathematics, restrain it, and impose on it some uniquely 
determined paths.

The second narrative axis surveyed the issue of mathematics’ foun-
dational epistemological and ontological position, as presented by the 
paradigm of Kant’s synthetic a priori. Does mathematics express an 
independent and formative source of knowledge, or is it reducible to 
other epistemological and ontological foundations?

The account of mathematics in this chapter highlights some of its 
distinctive features, and the notion of analytic a posteriori does ex-
press a claim to an autonomous and formative position, even though 
this position reacts to all sorts of a posteriori circumstances. More-
over, when viewed in the wider context of scientific and nonscientific 
forms of knowledge, it is clear that mathematics occupies a distinct 
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position on a continuum of institutions of constrained knowledge, cap-
tured, for example, by its consensus-forming arbitration mechanism.

Still, evaluations of the position of mathematics depend more, I 
believe, on acknowledging the many different kinds of constraints 
imposed on mathematics, including those that are comparable to the 
constraints imposed on other knowledge institutions, rather than on 
highlighting only those constraints that make it appear exceptional. 
The underlying issue is not that of reducing mathematics to some-
thing else, but that of acknowledging the constellation of forces that 
constrain mathematics. At the same time, we should acknowledge that 
there’s no single ground that bestows on mathematics a distinguished 
fundamental position.

The third narrative axis raised the issue of barring, taming, or living 
with monsters—those mathematical entities that impose inconsistencies 
or force the mathematician into conflict with established views. What 
does the preceding discussion tell us about handling such monsters?

The main point I wanted to make in this context is that even if we 
can bar or tame monsters by formal means, that is, by regimenting 
mathematical languages or delegating the power of arbitration to for-
mal languages, monsters will continue to permeate mathematics. 
These monsters live at the level of interpretation. It’s not that we have 
to hold on to all relevant interpretations all of the time. But our recon-
struction, superposition, and deferral of interpretations are monstrous 
in their own way.

In contemporary mathematics, when these interpretation strategies 
generate conflicts and mathematical monsters, we can count on the 
arbitration of formal languages to keep mathematical claims in line. In 
the past, the latter resolution of ambiguity did not apply in quite this 
way, and led to some substantial debates over the legitimacy of some 
well-reasoned mathematical entities and claims. But either way, math-
ematicians did and still do use ambiguities productively. Monsters are 
a mathematician’s friends.

Finally, there’s the narrative axis of authority—the complex coali-
tions and antagonisms between mathematicians, philosophers, sci
entists, and figures of authority. How should we read these changing 
configurations of discursive alliances and conflicts?

www.TechnicalBooksPdf.com



 Constraints-Based Philosophy  •  99

Contemporary analytic philosophy tends to reflect on mathematics 
from the point of view of empirical sciences (or at least of the philos-
ophy of empirical science). In analytic philosophy, there’s a certain 
tendency to demure: how can a belligerent discipline such as philoso-
phy claim to criticize such a successful venture as science? It seems 
that philosophers of mathematics see their authority as dependent on 
their support of science, rather than their critique.

This is not a very new trend. Wittgenstein asserted that “it is no 
good my getting the rest to agree to something that Turing would not 
agree to” (Wittgenstein 1976, 67–68; Turing being the only mathema-
tician in the classroom). Even Latour, one of those “fashionable figures 
in the history and sociology and anthropology of science” denounced 
by Burgess and Rosen (1997, 241), believes that the objections of scien-
tists to his anthropological account do matter, and therefore tried to 
rearticulate them in ways that would be more acceptable to scientists 
(Latour 2013, 12–13).

My objective in the last sections of this chapter was to rearticulate 
this focus, and phrase the questions concerning the truth and existence 
of mathematical statements and objects in a less restricted context, 
that of institutions of knowledge that do not necessarily belong to the 
empirical sciences. In that context, it becomes less obvious that the 
constraints imposed on mathematics necessarily align it with science.

Analyses of the position and merit of mathematics should evaluate 
the entire network of constraints imposed on this discipline, and re-
consider its automatic alliance with natural science on the one hand, 
and analytic philosophy on the other. Such evaluation, I hope, will 
reconfigure the understanding of mathematics from the point of view 
of the humanities and the social sciences, and therefore help advance 
the stated goal of this book.
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C H A P T E R  4

Two Case Studies of Semiosis in Mathematics

This chapter analyzes two case studies of mathematical practice 
with signs. They highlight some of the aspects discussed in the previ-
ous chapter, especially around issues of interpretation.

The first case study follows the paradigmatic mathematical sign, x, 
as it is used in applications of powers series to combinatorics via gen-
erating functions. I try to show how x works across different formal 
contexts without having to account formally, either in real time or 
sometimes even post hoc, for its cross-context mobility. I try to show 
that the ambiguity and openness to reinterpretation of the sign make 
it a useful algebraic tool for solving an ever evolving host of problems.

The second case study concerns the use of gender representation in 
a family of combinatorial problems subsumed under the title of “stable 
marriage.” The study of gender representations in scientific texts now 
has a long and distinguished history (for example, Cohn 1987; Keller 
1992; Martin 1991; Potter 2001). I follow this tradition in showing how 
gender role stereotypes are reflected by mathematical discourse and 
constrain mathematical production. I further use this case study as an 
example of the vicissitudes of signs that cross between everyday and 
scientific contexts, and insist that while their trajectory tends to fol-
low several known paths, their potential is unbounded and can’t be 
inscribed in advance.

Both case studies try to substantiate my general claims about inter-
pretation, formalization, and constraints over mathematical objects 
and statements. The first case study follows Wagner (2009c), and the 
second follows Wagner (2009b). For the benefit of accessibility, I re-
moved almost the entire structural and post-structural theoretic frame-
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work that was elaborated in those papers. Readers who are interested 
in getting a better idea of my theoretical motivations and goals are 
welcome to check out the original papers.

Ambiguous Variables in Generating Functions

Between Formal Interpretations

When we think of a mathematical sign, we usually think of it as hav-
ing a single fixed formal definition. If we fail to define the sign uniquely 
in a given context, we can’t affirm the consistency of our work, and 
without consistency mathematics seems to make no sense. This is 
a prevalent view concerning mathematics and one of the character
istics that supposedly set it apart from other, less rigorous, forms of 
knowledge.

The following example qualifies this prejudice. It shows that we can 
actually work with a sign that is not subject to a single definition, and 
is interpreted in incoherent ways. We already saw (in the third section 
of chapter 1) that Wittgenstein believed that contradictions are not a 
problem as long as we don’t pass through them. But this seemed to 
Turing like dangerous hand-waving. Here we see how this works in 
practice. In turn, this serves to show how we can mitigate the constraint 
of formal consistency in mathematical practice. Consistency turns out 
to be one constraint among many, not an absolute foundation.

This section considers the following kind of series:

	 ∑
n=

∞

0
anxn.

The context is that of solving combinatorial problems with so-called 
generating functions. In generating functions, the coefficients are usu-
ally the sequence of solutions of some combinatorial problem. Here 
the coefficients an are numbers. But when considering x, there are at 
least three preliminary interpretations.

First, x can be interpreted as a variable ranging over values in a 
given set. This interpretation obviously raises the question: which 
given set? In the context to be presented in this chapter, x is usually a 
real or complex variable, but this is not all there is to it. Depending on 
the coefficients, x may sometimes have to be restricted to a specific set 
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of values in order to guarantee convergence. For example, if an = 1 for 
all n, then convergence requires |x| < 1. Some sequences of coefficients 
do not allow convergence for any x other than 0.

Another possibility is to view x as a transcendental element in an 
extension of the domain of the coefficients. This means that we think 
of x as a new kind of number, which, when subjected to addition and 
multiplication, obeys standard algebraic rules (associativity, distribu-
tivity, and so on), and which does not obey any identity of the form 
∑N

n=0anxn = 0, unless for all n, an = 0.
Note that under this interpretation x is not a variable, but a con-

stant. The “constancy” of x, however, is somehow underdetermined. 
Structurally speaking, if I replace the sign x by y, I’ll get the exact 
same effects. In that sense, x and y would be the same. But to say that 
they are identical is risky. Indeed, if we want to use two elements tran-
scendental with respect to the domain and to each other (x does not 
solve any polynomial equation with coefficients that may involve y 
and vice versa), then x and y will obviously be distinct, although struc-
turally exchangeable. So the line between x as an individuated con-
stant and as something more general here is blurry.

The main constraint of this last interpretation is that it does not 
allow for infinite series, so we must assume that an = 0 for all n from a 
certain point on. To work with infinite sums of powers of x, and avoid 
convergence issues, we can use the algebra of formal power series. In 
this context, x is not a variable or a constant, but a placeholder. We can 
think of it informally as a comma separating the coefficients of the 
series (so ∑∞

n=0anxn is just another way or writing (a0, a1, . . . , an, . . .)), or, 
more formally, as some sort of a λ-operator that assigns values (the 
coefficients an) to the sequence of integers (the powers n).

This point of view allows us to define and control sums of power 
series, their products, some divisions, and even derivatives and inte-
grals of power series. For example, under this interpretation, the de-
rivative has nothing to do with limits and differentials; it is simply the 
operator that takes as input the series ∑∞

n=0anxn (which is equivalent to 
(a0, a1, . . . , an, . . . ) or λn.an) and gives as output ∑∞

n=1nanxn–1 (which is 
equivalent to (a1, 2a2, . . . , nan) or λn.(n + 1)an+1).

But this interpretation must be complemented and revised if we are 
to justify other tools of the trade, such as exponents of power series, 
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their infinite products, continued fractions, Laurent series (where there 
are infinitely many negative powers of x), and, most importantly, sub-
stitutions of x by numbers. Indeed, all these operations may involve 
infinite sums of coefficients, which require either convergence consid-
erations or some alternative formal account.

What we have here is an algebraic sign, x, that condenses various 
semantic and syntactic roles. This condensation might be sorted out 
by carefully distinguishing each use of x. But this careful, formal sort-
ing out is not reflected in mathematical practice. As one author writes, 
“one of the attractions of the subject, however, is how easily one can 
shift gears from thinking of [power series] as mere clotheslines for 
sequences [the formal variable approach] to regarding them as analytic 
functions of complex variables [the numerical variable approach]” 
(Wilf 1994, 167). Algebra operates by condensing not only sets of val-
ues into a single variable, but also a variety of syntactic roles into a 
single sign.

When using algebraic techniques to explore and solve combinato-
rial problems, the analysis is conducted on the seam line between the 
various interpretations of the generating function. It may therefore 
be useful to view x as a variable, a constant, or an element of a formal 
power series. As Wilf explained in the preceding quotation, mathe-
matical practice with generating functions requires us to “shift gears.” 
In order to use divergent series together with analytic techniques, and 
exploit the entire arsenal of power series technologies, one doesn’t 
choose how to articulate x. One takes advantage of the way x con-
denses various values and syntactic roles.

I conducted a small sample survey of textbooks and research mono-
graphs in order to probe into contemporary mathematical practice in 
the context of generating functions. As expected, and as I did in my 
own classroom, most authors either ignore the issue of the changing 
role of x, or wave it away with a cursory mention of some theoretic 
apparatus. Such comments are sometimes demoted to parenthetic re-
marks or footnotes, sometimes appear to be rather confused, and usu-
ally do not quite cover the entire scope relevant to the surrounding text.

One author, for instance, explains that “x is a formal variable and 
is used simply as an indicator,” and that therefore “there is no need to 
question whether the series converges” (Liu 1968, 25–26). Then, in a 
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footnote, the author suggests working “with the understanding that 
the value of x is set to be 0”—an approach that would get us nowhere 
fast, as it renders all power series identical. In fact, this author’s prac-
tice includes substitutions of numbers into x and real function differ-
entiations, which are not covered by the formal variable or zero value 
approaches.

Another form of ambiguity is manifest in juxtaposing the statement 
“convergence is not necessary for the series . . . to be useful in obtain-
ing various properties of [its] coefficients,” and the qualification that 
in dealing with “a power series expansion which is obviously diver-
gent whenever [the variable is nonzero], we find it convenient to use 
[the symbol ≈ rather than =] to indicate divergence” (Srivastava and 
Manocha 1984, 78).

This nonrigorous notation (When exactly does divergence become 
“obvious”? What constraints do we place on its use?) is already avail-
able in MacBride (1971, 2), but neither text states the conditions under 
which their exponentiations, derivations, Laurent series and substitu-
tions can be controlled under a formal series approach. To back things 
up, the latter author cites the work of E. T. Bell (as does Eisen 1969, 
70), who qualifies the unknown in a footnote as “an abstract indeter-
minate,” ignoring the real value limits and substitutions used shortly 
thereafter. Bell’s work (1923)—a fine example of struggling for formal 
rigor in a setting where the means had not yet fully crystallized—does 
not quite provide the required theory of abstract indeterminates, and 
refers part of what is sought to Grassmann and Gibbs.

Other authors are somewhat more careful. One author provides an 
elementary theory of formal power series, explicitly marks transitions 
such as “below we treat the formal variable s as the complex variable 
s ∈ C” (Lando 2003, 48), and raises some issues concerning continued 
fractions. But the same author does not question the consistency of 
switching between the formal and analytic approaches. A somewhat 
less rigorous approach is to make sporadic parenthetic remarks con-
cerning radii of convergence, without following this concern through-
out, as in Tucker (2002, 248). This approach is the successor of the most 
stoic approach of all: keeping entirely quiet about formal rigor, as prac-
ticed by the last prominent proponent of the nineteenth-century Brit-
ish school of algebra, Percy MacMahon (1915–16).
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In this respect, Wilf is the most explicit author I found. He intro-
duces both the formal and analytic theories, stating that under the 
formal interpretation “we love [x] only for its role as a clothesline on 
which our sequence is hanging out to dry” (Wilf 1994, 6). He points 
out the technical transition between interpretations (Wilf 1994, 35), 
and even confesses a relationship of cheating, guilt, and making peace 
with his double-faced approach (Wilf 1994, 35, 30, 35, respectively). 
But his way of making peace is only almost convincing, and lacks a 
formal reconciliation especially around infinite products (Wilf 1994, 
91). Wilf is also the author who makes ambiguity fully explicit: “One 
of the attractions of the subject, however, is how easily one can shift 
gears” (Wilf 1994, 32).

Before I bring on the wrath of mathematical authors, I must hasten 
to clarify that I fully endorse most approaches taken by the preceding 
authors. The theory isn’t faulty. Generating functions are mathemati-
cally robust tools. Indeed, given sufficient context, any power series 
manipulations by the authors cited earlier can be justified rigorously. 
But my point is that the justification is not an a priori framework; the 
justification is a cohort of ad hoc constructions and shifting points of 
view that confront a developing set of tools. One can construct a the-
ory unifying various formal power series and real or complex variable 
techniques, but then one could introduce new manipulations that ex-
ceed the constructed theory, and would require an extension and a 
review of the theoretic validation.

To understand contemporary mathematical practice, it is crucial 
to observe that the mathematical literature does not bother with such 
tailor-made theories. If they bother considering the issue at all, au-
thors are typically happy with folk knowledge, based on experience 
and authority, that everything they do is rigorously justifiable. This 
justifiability does not translate into an actual formal reconstruction or 
practiced conceptual stability, and there’s nothing wrong with that. 
Logician Yehuda Rav states that

Indeed, a strict axiomatization of analysis, or any field of mainstream math-
ematics, for that matter—certain geometries excepted—would be counter-
productive, and essentially not feasible. The reason is simple, stemming 
from what can be called the transfer of technologies. The issue is this. Ideas 

www.TechnicalBooksPdf.com



106  •  Chapter 4

and concepts that were developed independently in a particular area of 
mathematics are frequently used and applied in a different context, much 
to the enrichment of the latter. Encapsulating a major branch of mathe-
matics, such as analysis, for example, within a rigid axiomatic framework, 
would block beforehand such unforeseeable developments, including re-
proving theorems by different methods, as mathematicians often do. (Rav 
2008, 134–35)

Moreover, when one reaches theoretic forefronts, one encounters ma-
nipulations that produce correct results, but don’t (yet?) have general 
rigorous mathematical frameworks to justify them, such as the replica 
trick from statistical physicists, which, in a sense, takes an integer 
valued variable, and then makes it converge to zero (see for example, 
Mezard et al. 1987 and Talagrand 2003).

The point I am making is that the sign x allows condensing various 
semantic and syntactic roles, a condensation that enables practices 
belonging to different justification frameworks to be performed on 
the same mathematical term without requiring an integrative a priori 
framework. Some ambiguity of roles is constitutive of working with 
unknowns in the context of power series and generating functions. 
Our instances of x earlier are not quite variables, constants, or λ-
operators. The symbol x plays the role of a middle term that binds the 
system together.

The fact that it’s possible, in principle, to formally reconstruct given 
portions of current mathematical practice does not make the ambigu-
ities of really existing mathematical practice go away. Ambiguity does 
not mean that mathematical practice is faulty. The fault is with formal 
reconstruction, which fails to capture how mathematics is practiced. 
The single sign x retraces something that relates value-carrying vari-
ables, transcendental constants, and place-holding λ-operators—a prac-
tical relation that is independent of the articulations of the various 
syntactic roles.

Foundational philosophies of mathematics do not acknowledge in-
definite deferral of formalization. For the formalist, logicist, intuition-
ist, platonist, empiricist, or structuralist, mathematical manipulations 
take place in distinctly and clearly articulated realms of rules, objects, 
or mental constructions, rather than through fluid interpretive frame-

www.TechnicalBooksPdf.com



 Two Case Studies of Semiosis  •  107

works. These philosophies may acknowledge sequential “snapshots” 
of mathematics, where each snapshot records a somewhat different 
robust mathematical system (Greek geometry versus Cartesian alge-
braized geometry; formal power series versus analytic power series), 
but these philosophies are not concerned with understanding the mo-
tion excluded from these snapshots. Indeed why should they? They are, 
precisely, foundational, and do not care for mathematical practice.

Models and Applications

Let’s follow the use of x more explicitly by anchoring it to a specific 
mathematical practice: solving combinatorial problems with generat-
ing functions. I will not present the method in general, only supply an 
example.

Suppose we want to count all ways of distributing 20 identical balls 
into three boxes, where the first box may contain any number of balls, 
the second may contain up to 3 balls, and the third must contain an 
even number of balls. For example, 3,1,16 is one acceptable distribu-
tion of 20 balls into the three boxes, because 1 is not greater than 3, 
and 16 is even. 10,2,8 is another acceptable distribution of 20 balls. The 
problem demands that we count all such possible distributions.

It turns out that the number of acceptable distributions equals the 
coefficient of x20 after unpacking and simplifying the product

	 (x0 + x1 + x2 + …) ⋅ (x0 + x1 + x2 + x3) ⋅ (x0 + x2 + x4 + …)

(the powers inside each pair of parentheses reflect the restriction on 
the content of the corresponding box). This is the generating function 
of the preceding combinatorial problem.

This solution is based on an analogy between ways of distributing 
balls into boxes and ways of generating monomials (terms of the form 
xn) when unpacking the product. To each legitimate distribution of 20 
balls (say, 3,1,16 or 10,2,8), there corresponds a single product of mo-
nomials from the preceding product of sums that equals the monomial 
x20 (for example, the products x3 ∙ x1 ∙ x16 or x10 ∙ x2 ∙ x8). Since there are as 
many products equal to the monomial x20 as admissible distributions of 
20 balls, the coefficient in the sum of these monomials (which we get 
by unpacking the preceding product of sums) is precisely the required 
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number of admissible distributions. (This is an easy observation, but 
somewhat tricky to explain. If you don’t get it, think of the simpler 
product (x0 + x1) ∙ (x0 + x1) ∙ (x0 + x1) = x0 + 3x1 + 3x2 + x3). There are 
three ways to get x2 here: x0 ∙ x1 ∙ x1, x1 ∙ x0 ∙ x1 and x1 ∙ x1 ∙ x0; they sum up 
to exactly 3x2.)

Let’s state the elements of the analogy between the combinatorial 
problem and the algebraic product that underlie the solution: the three 
pairs of parentheses in the algebraic model stand for the three boxes; 
the powers inside each pair of parentheses stand for the number of 
balls allowed in each box; the power 20 in the target monomial stands 
for the total number of balls; the products between the sums stand for 
a conjunctive relation between the conditions set on the boxes (at most 
three in the second and an even number in the third); the summation 
of monomials inside parentheses stands for a disjunctive relation be-
tween the possibilities for each box (either zero or one or two or . . . ).

But having correlated the elements of the problem and the elements 
of the solution so neatly, there’s something that is conspicuously left 
out. Indeed, what does x stand for? Well, in fact, x here does not stand 
for. The values that may be taken by x have nothing to do with the 
problem. x is a term in an algebraic structure that binds the various 
algebraic elements in ways analogous to the combinatorial problem. x 
is a means to tie together an algebraic structure and a combinatorial 
problem. x is a signifier without a signified, the excess of the algebraic 
over the combinatorial. x is the degree of freedom of algebra that al-
lows it to adapt itself to the combinatorial problem.

This algebraic apparatus has been adapted for solving a long string 
of changing problems throughout its history. How is it that a single 
language can adapt itself to a changing world of reference? According 
to Lévi-Strauss (1987, 64) every signifying order (in our case, algebra) 
requires “zero symbolic value” elements, such as our x, so as to guar-
antee the flexibility required for successful application to a changing 
signified reality (in our case, combinatorics).

The algebraic unknown is useful because it does not require us to 
decide once and for all what it stands for. We can, of course, stop at 
any given moment, and reconstruct a more-or-less stable signified for 
the algebraic unknown. But “even though scientific knowledge is ca-
pable, if not of staunching it, at least of controlling it partially [the] 
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floating signifier [remains] the disability of all finite thought” (Lévi-
Strauss 1987, 63). It exceeds finite thought in being reconstructible and 
reinterpretable, never reducible to a finitely containable carrier of an 
a priori order.

The algebraic unknown is the felicitous “expression of a semantic 
function, whose role is to operate despite the contradiction inherent in 
it” (Lévi-Strauss 1987, 63)—the contradiction between the formalized 
order of signifier (algebra) and the changing problems that we try to 
solve with it. It’s the leeway of reworking signifier/signified relations 
through a “floating signifier” or “zero symbolic value” that enables us 
to more or less successfully represent combinatorics by algebra despite 
their discrepancies. The “floating signifier” is not a pathology, it is a 
constitutive condition for signification.

Openness to Interpretation

Let’s return to our case study. By the rules for summing geometric 
series, the preceding product of sums equals

	 1	 1 – x4	 1	 —–—— ∙ —–—— ∙ —–——.	 1 – x	 1 – x	 1 – x2

When working with generating functions in this kind of rational func-
tion representation (products and fractions of polynomials), solutions 
sometimes go through other algebraic problems, such as turning prod-
ucts into sums. For instance, we may need to find the coefficients a 
and b for which

	 1	 a	 b	 —————————— = ———— + —————	 (1 – x)(1 – 2x)	 (1 – x)	 (1 – 2x)

or, equivalently,

	 1 = a(1 – 2x) + b(1 – x)

Here, one of the simplest ways to get a and b is to substitute the values 
1 and ¹-₂ for x. This yields 1 = a(–1) + 0 and 1 = 0 + b¹-₂, respectively, so 
a = –1 and b = 2. Note that this requires the unknown x to become a 
substitutable variable, even if so far we have used it as a term of formal 
series. More importantly, note that x is substituted by the very values 
that render the first equality undefined!
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As with the zigzagging between formal series and analytic func-
tions earlier, this glitch too can be rigorously circumvented. For exam-
ple, we could substitute values tending to 1 and ¹-₂ from below, and take 
the limit—which, by the way, would still be problematic if we went 
back from the rational function to the power series, one of which is 
undefined around 1 . . . 

But such reconstruction is precisely what mathematicians usually 
do not do, even when teaching or writing for first-year students, who 
are not likely to note the gap and patch it up by themselves. Which, 
I emphasize again, is a practice that I endorse. Indeed, if this weren’t 
our practice, how would our students ever get to actually practicing 
mathematics? One doesn’t train new mathematicians by drowning 
them in mathematical foundations.

The point here is not just to demonstrate the superposition of vari-
ous given approaches, or the floating of algebraic unknowns over an 
ever changing combinatorial signified. The point here is to bring up an 
openness to something that’s not confined to a given, closed set of tools.

This openness has several dimensions. The first dimension is that of 
unexpected interpretations of algebraic unknowns. For example, sup-
pose our manipulation would have led us to seeking a and b for which

	 x2 – 1 = a(1 – x) + b (1 – x)2.

We can try to use the same technique as earlier, but here no number 
substituted for x could nullify the b term without nullifying the a term 
as well. However, we can find matrices that do the job, such as 

	 1 –1
	 0  1.

But if we allow matrices into this practice, the range of x will exceed 
the previous confines of commutative algebra without zero divisors 
that reigned over the discussion so far, and the entire theoretical justi-
fication would have to be reconsidered.

This first dimension of openness, the one articulated in this exam-
ple, is the openness of the algebraic unknown to assuming new roles 
and reforming the justification framework of its practice. (Note also 
that if we allow x to take matrix values, then the number 1 becomes 
the identity matrix I, so should we still think of this 1 as a constant?)
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The next dimension of openness is more radical than the earlier 
referential and syntactic openness. This second dimension of open-
ness is the mathematician’s practice of not deciding, either in advance 
or after the fact, what x is. This openness is the openness to semi-
rigorous entities in mathematical practice.

How does that fit with my portrayal of formalization as the su-
preme arbitrator over mathematical validity? Since formalization plays 
the role of highest arbitrator, it is only called upon where there’s a 
dispute that survives “lower” instances of arbitration, such as author-
ity, experience, intuition, analogies, and standard tool boxes. What’s 
settled on those grounds does not require formal arbitration. And even 
when formal arbitration is called for, it involves only partial formal-
ization of subarguments, because full-scale formalization is unman-
ageable for real-life advanced mathematical disputes. Deeper levels 
of formalization may simply not be called upon, unless a specific chal-
lenge arises.

In the last example, x is not quite an element of the formal algebra 
of power series, nor is it a variable standing for values. It is not simply 
a middle term either. There, x is something that exceeds rigorous for-
mality. Indeed, x can (to an extent, even should) be reintegrated through 
a formal reconstruction of the algebraic setting, which would render 
consistent the substitution of x. I have no wish to deny that such rein-
tegration is an aspect of contemporary mathematical practice. But I 
insist on asserting that deferring rigor, sometimes indefinitely, is no 
less important in its turn.

On top of being a part of some formal language, x is a sign that’s 
practiced in various material ways, all having to do with Derrida’s 
condition of iterability—being quotable and transportable between 
contexts. These practices are not suppressed or replaced by formal and 
rigorous aspects of mathematics. These practices live alongside for-
malized practices, and mathematics is the joint fruit of the constraints 
and opportunities imposed by formal and informal aspects of mathe-
matical practice superposed.
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Gendered Signs in a Combinatorial Problem

The Problem

Let’s begin this discussion with two compact formal statements of 
the problem addressed by Hall’s theorem (Hall 1935), as presented in 
a more recent textbook (Wilson 1996, 112; the technical terminology 
will be explained shortly):

If there is a finite set of girls, each of whom knows several boys, under 
what conditions can all the girls marry the boys in such a way that each 
girl marries a boy she knows?

And here is how the same problem appears on the next page:

If G = G(V1,V2) is a bipartite graph, when does there exist a complete match-
ing from V1 to V2 in G?

The latter formulation is a technical question about “graphs,” which 
are simply configurations of points and of lines that connect some 
pairs of the points. This question dates back to the 1930s (or even ear-
lier, according to some authors). The gendered formulation, which very 
often accompanies the more abstract one, is attributed to Hermann 
Weyl (1949). In this formulation the points in the configuration be-
come boys (elements of the set V1) and girls (elements of the set V2), 
and the lines connecting boys and girls become relations of acquain-
tance. The marriage problem is to find whether there exists a complete 
matching—a monogamous heterosexual marriage arrangement, which 
includes all girls, and which matches each girl to a boy she knows.

Our task in this chapter is to outline the interrelations between 
mathematical practice and gender language in the context of variants 
of this problem, and to explore their mutual impact. In other words, 
the task is to explore the constraints and opportunities that the gender 
language imposes on the practice of mathematicians in this specific 
context.

We will focus on a more recent version of the problem, introduced 
in Gale and Shapley (1962), which includes a component of personal 
preferences. Let us review this version in more detail before we survey 
the use of gender roles in various textbooks and papers studying this 
problem over the last four decades. Our initial presentation will be 
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borrowed from one of the most important texts presenting the prob-
lem (Knuth 1997, 1; originally published in French in 1976).

Let H and F be two finite sets of n elements. H is the set of men A1,A2, . . . ,An 
and F is the set of women a1,a2, . . . ,an. A matching is . . . a set of n monoga-
mous marriages between the men and the women. . . . Suppose that each 
man has an order of preference for the women and each woman an order 
of preference for the men. . . . A matching is unstable if a man A and a 
woman a, not married to each other, mutually prefer each other to their 
spouses. This “liaison dangereuse” occurs when:

•	 A is married to b;
•	 a is married to B;
•	 A prefers a to b;
•	 a prefers A to B.

(The opinions of b and B are irrelevant here.) A matching is stable if this 
situation does not occur.

Here’s an example from Steven Rudich’s classroom presentation 
(2003). It includes a diagram (figure 4.1) representing five boys and 
five girls together with their ranking of members of the opposite sex, 
and an instance of a stable matching (here “pairing”).

You can verify that any girl and boy not married to each other (for 
example, boy 1 and girl 2) do not both prefer each other over their 
actual spouses. Indeed, while boy 1 does prefer girl 2 over his actual 
wife (girl 5), girl 2 prefers her assigned husband (boy 2) over boy 1. 
Therefore, boy 1 and girl 2 do not form a potential “rogue couple,” and 
according to the rules of the problem they will not break their mar-
riages in order to marry each other. You can go on verifying that in the 
preceding example there is indeed no rogue couple.

It is not clear at first sight whether all systems of preferences admit 
a stable matching. Gale and Shapley proved that such a matching does 
indeed always exist, and supplied a simple algorithm (or set of instruc-
tions) for producing a stable matching. Before commenting on their 
algorithm, it is important to emphasize that this algorithm is not the 
only method for producing a stable matching. It is, however, histori-
cally the first to have appeared, and the most widely reproduced in the 
literature (although, I believe, not the simplest available).
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A compact description of the process of generating a stable match-
ing can be found in Bollobás (1988, 86), where it is referred to as “sim-
ply the codification of the rules of old-fashioned etiquette: every boy 
proposes to his highest preference and every girl refuses all but her 
best proposal,” keeping her favorite suitor on hold. Each rejected boy 
continues to propose to his next highest preferences, and each girl 
continues refusing all but her highest preference among the boys who 
actually propose to her at any given time, possibly rejecting a boy 
whose proposal she had previously kept on hold. “This goes on until 
no changes [new proposals] occur; then every girl marries her only 
proposer she has not yet refused.”

Figure 4.1: An example of a stable matching. Reprinted from Steven Rudich, “The 
Mathematics of 1950s Dating: Who Wins the Battle of the Sexes?” Available at 
http:/ www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15251/discretemath/Lectures 
/dating.ppt.
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A more graphic description (figures 4.2 and 4.3) of this process is 
available, again, from Rudich (2003). Gale and Shapley proved that this 
iterative process must converge to a one-to-one matching in a finite 
number of steps, and that this matching is indeed stable in the sense 
defined earlier (no rogue couples).

Figures 4.2 and 4.3: Literal and figural presentations of the Gale-Shapley algorithm. 
Reprinted from Steven Rudich, “The Mathematics of 1950s Dating: Who Wins the 
Battle of the Sexes?” Available at http://www.cs.cmu.edu/afs/cs.cmu.edu/academic 
/class/15251/discretemath/Lectures/dating.ppt.

TRADITIONAL MARRIAGE ALGORITHM

For each day that some boy gets a “No” do:
• Morning
   – Each girl stands on her balcony
   – Each boy proposes under the balcony of the best girl
      whom he has not yet crossed o�

• Afternoon (for those girls with at least one suitor)
   – To today’s best suitor: “Maybe, come back tomorrow”
   – To any others: “No, I will never marry you”

• Evening
   – Any rejected boy crosses the girl o� his list

If no boys get a “No”:
Each girl marries the boy to whom she just said “maybe”

Female

String

Worshipping males

TRADITIONAL MARRIAGE ALGORITHM
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Gender Role Stereotypes and Mathematical Results

It is no surprise that mathematicians, like almost anyone else in our 
society, reproduce gender role stereotypes. In this specific setting, the 
reproduction of stereotypes can be somewhat excused by noting that 
it is precisely the stereotypes that make the marriage terminology 
an  intuitively accessible presentation of the problem. If stereotypes 
were challenged in the presentation, then practitioners wouldn’t be 
able to build on their intuitively accessible stereotypes in order to un-
derstand the question, and the entire imagery would be useless. But, 
as we shall see, adhering to the stereotypes has its price. I emphasize 
that my point is not to accuse authors of sexism. My point is to ana-
lyze the constraints and opportunities that the use of stereotypes (here, 
gendered stereotypes) in presenting such mathematical problems may 
impose.

In the dozen or so textbooks, monographs, and research papers that 
I surveyed for the purpose of this analysis, I found substantial variety 
concerning notation, terminology, and focus on men or women (most 
texts in fact focus more on what women do in the process of the 
matching algorithm). Rudich’s slides, for instance, are exceptional in 
the way they put women, literally, on a pedestal (as we shall see later, 
this is a deliberately ironic choice). But as one would expect, through-
out the literature it is the boys who propose.

A typical statement in this context is: “We will adopt the traditional 
approach describing the men as ‘suitors’ in a ‘courtship’ process, but 
analogous results may be obtained by reversing the roles of the sexes” 
(Gusfield and Irving, 1989, 8). The problem is symmetric—the roles of 
men and women may be interchanged—but the literature consistently 
opts to solicit the men to propose. The only exception that I found to 
this rule (excluding texts that do not quote the matrimonial imagery at 
all) is a text that does use matrimonial language, but refuses to assign 
genders: “We leave the reader to assign the sexes of V1 and V2” (Asra-
tian et al. 1998: 67).

A particularly disturbing feature in the various narrations of the 
algorithm is that in none of the surveyed texts do the women ever say 
“yes” to the marriage proposals. Their replies are either a definite “no,” 
a deferring “maybe,” or a silence that is interpreted as provisional or 
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permanent consent. At the end of the algorithm, no additional step 
is required for all the final silences and “maybes” to become consum-
mated in marriages, so the women are not required to actively confirm. 
From the point of view of implementing the algorithm in computa-
tional contexts, this makes perfect sense; but the fact remains that a 
mathematical woman needn’t say “yes.” It suffices that she does not 
explicitly refuse.

The result of the Gale-Shapley algorithm is very strongly biased in 
favor of the proposing side (which is a euphemism for men). In fact, 
given a system of preferences, the Gale-Shapley algorithm produces 
the stable matching that is worst for all women and best for all men. 
This does not mean that each man gets his first choice and every 
woman her last; indeed, such a matching needn’t be stable nor even 
monogamous. What “female pessimality” and “male optimality” mean 
is that no stable matching exists, where any man marries a woman 
whom he prefers over the one assigned by the Gale-Shapley algo-
rithm; on the other hand, no stable matching exists that marries any 
woman to a man less desirable to her than the one assigned by the 
Gale-Shapley algorithm.

As we noted earlier, the stable marriage problem is symmetric (the 
sides can be exchanged without changing the problem). Gender roles 
discourse however is asymmetric, as is Gale and Shapley’s algorithm 
and its result. Should we conjecture that a link exists between these 
two forms of asymmetry? Later I will present some evidence suggest-
ing that gender role stereotypes reproduced in theoretical delibera-
tions may affect the structure of mathematical results.

But before I do that, I should clarify that I don’t pretend to offer a 
conclusive proof that the language we use causally determines scien-
tific results. First, I see no methodological scheme that can convinc-
ingly separate scientific results from the language used to express them 
so as to assert a causal relation between distinct variables. Second, to 
the extent that we can articulate this separation, I doubt that we could 
come up with a corpus of texts that would supply proper control over 
the variables we might wish to correlate. Given these circumstances, my 
goal is to make room for the possibility that language co-constitutes 
scientific (specifically, mathematical) production. Accepting this very 
possibility, regardless of our capacity to provide a rigorous proof, has 
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significant political and ethical repercussions: it means that scientists 
should assume responsibility for their language.

Let’s review, then, the evidence that I propose for the possible im-
pact of gender role discourse on the mathematical analysis of the stable 
marriage problem. The fact that the Gale-Shapley algorithm is male-
optimal is noted in Gale and Shapley’s original paper from 1962. It 
took, however, an additional nine years for the observation that the 
algorithm is female-pessimal to reach the literature (McVitie and Wil-
son 1971). Both facts are just as easy to observe and prove. Should we 
interpret this temporal gap as reflecting a foreclosure on stating the 
question from the women’s point of view?

The Gale-Shapley algorithm is indeed strongly biased in favor of the 
proposers. Today, however, there are several algorithms for producing 
stable matchings that generate results of a more balanced nature. It is 
interesting to observe that the first steps in this direction were quoted 
by a subsequent author with no reference to a publication (Selkow, 
quoted in Knuth 1997, 51; Conway’s median observation, quoted in 
Knuth 1997, 56). Should we interpret this deferral of publication as 
indicating a lack of interest in generating balanced algorithms?

The first kind of more balanced algorithms start with the Gale-Shap-
ley algorithm, and manipulate it by exchanging spouses in controlled 
ways. In the presentation of these algorithms, the elements of analy-
sis undergo various transformations. The basic unit of analysis corre-
sponds to the symmetric notion of “possible pair” rather than to men 
or women as in the original algorithm (Gusfield and Irving 1989; 
Vande Vate 1989; Teo and Sethuraman 1998). Can the shift toward a 
symmetric unit of analysis account for the emergence of more bal-
anced algorithms?

The second kind of more balanced algorithms emerges from Roth 
and Vande Vate (1990), further developed in Ma (1996) and in Romero-
Medina (2005). The basic step in these versions is applying the Gale-
Shapley algorithm in a way that allows all players to assume the pro-
posing and reactive roles. The algorithm and its analysis are (in my 
opinion) simpler than Gale and Shapley’s algorithm: people enter a 
room one at a time. Each new entrant is matched to her or his highest 
preference among all those in the room willing to accept the new en-
trant (either because they are single or because they prefer the new 
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entrant over their current partner). Now, the matching of the new en-
trant may have separated someone in the room from a preexisting 
spouse. Such newly single persons are then matched as if they have 
just entered the room one by one. This goes on until no more couples 
in the room are broken. Then a new person enters the room, and so on, 
until everyone is matched.

This algorithm is practically identical to the Gale-Shapley algo-
rithm, except that it conducts the proposal sessions individually, 
rather than in men/women blocks. Nevertheless, when it came into 
the theory (in 1990), this minor variation was quite a novelty—so 
much so that it solved an open problem raised by Knuth fourteen 
years earlier. Should we explain this long delay by an adherence to 
gender role stereotypes?

These pieces of circumstantial evidence can be confronted with var-
ious critiques. Obviously, one could offer alternative explanations to 
the theoretic developments that would have nothing to do with gen-
der or language. I do not claim that such explanations are necessarily 
invalid. My objective is to open up the possibility that gender role 
discourse could have had substantial impact on the development of 
the theory. I will therefore only comment specifically on one possible 
objection.

One could claim that more balanced algorithms emerged later in 
the theory simply because such algorithms are more difficult to pro-
duce. For some—but not all—of the more balanced algorithms, this 
claim is indeed true. In fact, one version of the problem of finding a 
balanced stable matching, the so-called sex-equal matching problem, 
is known to be NP-hard (Kato 1993; NP-hardness implies that it is not 
practically computable in some sense).

However, this excess of difficulty could itself be an effect of lan-
guage. We know, for instance, that geometric problems may change 
their degree of difficulty if presented in terms of calculus or classical 
geometry. Even the notion of NP-hardness itself depends on a con
tingent construct of computational complexity, which shouldn’t mo-
nopolize our notion of hardness of computation. (I do not refer only to 
exotic models such as DNA and quantum computing, but also to the 
asymptoticity built into computation complexity definitions, which 
doesn’t always reflect “real life” concerns.)

www.TechnicalBooksPdf.com



120  •  Chapter 4

Before we move on with the argument, I would like to note a paper 
dealing with another combinatorial problem, the so-called ménage 
problem. The abstract reads:

The ménage problem . . . asks for the number of ways of seating n couples at 
a circular table, with men and women alternating, so that no one sits next 
to his or her partner. We present a straight-forward solution to this prob-
lem. What distinguishes our approach is that we do not seat the ladies 
first. (Bogart and Doyle 1986)

The authors claim, with a certain reservation, that “of all the ways 
in which sexism has held back the advance of mathematics,” the fact 
that all previous algorithms seated the ladies first “may well be the 
most peculiar” (Bogart and Doyle 1986, 517). It seems that at least some 
mathematicians directly involved with such subject matter acknowl-
edge the constraints imposed by gender role stereotypes on mathe-
matical discovery, at least as a peculiarity.

Mathematical Language and Its Reality

It would be extremely uncharitable to assume that any of the cited 
researchers genuinely believes that the stable marriage model is a per-
fectly adequate description of social reality. Indeed, the gap between 
the model and the supposed reality is not ignored in the literature. One 
can read that “We will sometimes speak about courtship, but never of 
dependent children or mid-life crises” (Roth and Sotomayor 1990, 1), 
and that “This makes the (somewhat unrealistic) assumption that it is 
always better to be married (to an acquaintance) than to stay single” 
(Bollobás 1998, 85). Some texts consider the entire marriage terminol-
ogy as “frivolous” but continue to use it anyway (Wilson 1996, 113).

Nevertheless, the literature does contain statements that indicate 
that the analysis and its results are taken as representative of reality, 
such as “Societal habits thus favor men” (West 1996, 177), and “We 
shall give a result which perhaps demonstrates an effect of complete 
inequality of the sexes” (Asratian et al. 1998, 70). When one reads that 
“The algorithm is the codification of old fashioned etiquette” (Bollobás 
1998, 86), one reads a rather doubtful and revisionist social history.
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The realistic interpretation of the mathematical problem is rein-
forced when shifting from the marriage context to the job-assignment 
formulation of the same problem. The latter is considered as “more 
serious,” even though this version too abstracts and ideologizes many 
factors that drive mathematical analysis away from any social reality 
that it purports to seriously emulate.

The most widely discussed applications of stable matching schemes 
are the matching of residents to hospitals and of students to schools. 
If we consider information gaps (people don’t always know each oth-
er’s preferences, and so can’t tell if there’s an opportunity to “elope”), 
change of mind and hesitation (preferences are contingent, change 
over time, and may depend on what is learned over time of others’ 
preferences), contractual obligations, and practical impediments (which 
may prevent “rogue couples” from “eloping” even if such couples do 
exist), stability may become less relevant.

The applicability of stability to actual, real life contexts has only 
been considered seriously since the mid-1980s. Roth and Sotomayor 
(1990) survey some aspects of stability in applications. To be fair, their 
analysis is lucid enough to raise many pertinent objections, including 
some of those mentioned earlier. They even write (1990, 156): “at least 
one of the authors would feel very differently about the theory pre-
sented here if the weight of the empirical evidence were different.” But 
as is often the case in mathematical game theory and economy (recall 
our Black-Scholes vignette), the interpretation of empirical evidence 
allows ideological commitments to gain the upper hand. It was in fact 
the very evidence raised by Roth and Sotomayor that evinced my sus-
picion that the success or failure of a matching scheme in contempo-
rary applications may not depend heavily on stability, but rather on 
other factors.

In fact, the Gale-Shapley algorithm was introduced in 1962. It had, 
however, already been in use for eleven years by that time. Since 1951, 
residents (formerly interns) have been assigned to US hospitals via a 
centralized application of a variant of the Gale-Shapley algorithm. 
That this was the case was observed by Roth only in the mid-1980s. Is 
it possible that the notion of “stability” is an a posteriori justification 
for the coincidence between a biased assignment scheme and a biased 
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mathematical discourse, both emerging from interrelated ideological 
commitments? To quote Emily Martin quoting David Harvey, perhaps 
this amounts to the “implanting of social imagery on representations of 
nature so as to lay a firm basis for reimporting exactly that same imag-
ery as natural explanations of social phenomena” (Martin 1991, 500).

I will not ponder here over the details of the debate. I would only 
like to indicate that the quest for stable solutions is an overarching 
characteristic of contemporary game-theory and economics. Many 
questions related to the production of “mobility”—which is often marked 
as a desirable social goal—are foreclosed by some aspects of contem-
porary game-theoretic and economic language.

In our context, this foreclosure is expressed through statements 
such as: “A pairing is doomed if it contains a rogue couple” (Rudich, 
2003); “The idea of stable matching is inspired by the search for an 
idyllic society of married couples” (Asratian et al. 1998, 67); and “from 
the practical and algorithmic standpoint [some specific] results are 
negative, since they do not lead to acceptable ways to produce desir-
able stable matchings using the Gale-Shapley algorithm” (Gusfield and 
Irving 1989, xv). Another strong statement is the following:

One of the main difficulties with using the men-optimal stable matching 
mechanism is that it is manipulable by the women: some women can in-
tentionally misrepresent their preferences to obtain a better stable partner. 
(Teo et al. 1999, 430)

Rather than describe preference list manipulation as a way of turning 
a highly unbalanced algorithm into a more balanced one, the literature 
condemns this opportunity as “cheating,” namely, as something that 
should be prevented.

The Forking Paths of Mathematical Language

It may seem as if I were advocating the banishment of gendered lan-
guage from mathematics in favor of some pure unbiased abstraction. 
But this is not the case. First, the supposed “purity” is unattainable. 
Our language is imbued with gender, whether we like it or not. Some 
theoreticians go as far as to say that every discourse that operates a 
binarism operates a gendered structure.
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But the desire for a purified scientific language encounters a fur-
ther, more radical problem. This desire to purify science from linguis-
tically imposed bias relies on an assumption that behind the various 
ways of representing scientific or mathematical problems there is an 
objective and originally present problem—that our presentation of a 
problem covers over a “pure” problem. I would rather promote a stance 
according to which the scientific or mathematical problem is, pre-
cisely, the various ways in which it is re-presented and applied—that 
mathematical problems are not simply covered by the symbolic fabrics 
and practices into which they are sewn, but are actually spun from 
those very symbolic fabrics and practices, and consist of quilting to-
gether various symbolic and practical fabrics. There needn’t be any 
essence to a mathematical problem other than an essential dependence 
on the texts and practices through which the problem is articulated.

As explained in the previous chapter, accepting such a stance does 
not imply that mathematics is arbitrary or unconstrained. It does mean, 
however, that scientific and mathematical authors are implicated in 
a responsibility for the ideological commitments and opportunities in 
which scientific production is immersed.

To the two objections mentioned earlier I would like to add one fur-
ther objection. Entangling abstract mathematical patterns with some 
looser everyday linguistic structures might actually help mathemati-
cians think creatively. There’s even a small chance that this entangle-
ment may help shift some of our everyday biases.

To substantiate this position, I will go through some examples of 
semiotic-mathematical transformations and their interaction with ideo-
logical commitments. As we shall see, this interaction is often conser-
vative and mutually reinforcing, but it can also transform, manipulate, 
and undermine the ideological commitments of the discourses with 
which mathematical production interacts. The interaction between 
mathematics and its signs cannot be reduced to a straightforward, 
conservative, and reactionary imposition.

The variations of the marriage problems include what we might call 
“alternative families.” For example, instead of a matching based on a 
gender division, we may be given a set of people each of whom can be 
matched to any other. The literature I surveyed never refers to this as 
the “homosexual marriage problem.” Rather, it is called the “roommates 
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problem,” and even “a unisex problem: stability of roommates” (Knuth 
1997, 64). The one exception is Rudich’s presentation, which describes 
this situation as “bisexual dating.” The role of this scenario in Rudich’s 
presentation, however, is to demonstrate a case where a stable match-
ing is unattainable. Since stability is strongly marked as an essential 
ideal in Rudich’s presentation (“a pairing is doomed if it contains a 
rogue couple”), bisexual dating seems to be negatively marked.

The preceding example demonstrates how, when the discourse en-
counters an opportunity to endorse progressive aspects of sexuality, it 
tries to clean itself up and revert to gender-neutral language. Conser-
vative sexuality discourse is strong enough to hold back the appli
cation of sexual metaphors to mathematics in unorthodox situations, 
even when progressive sexual language makes mathematical sense.

The same phenomenon is repeated when other combinations are 
suggested. For instance when triples, rather than couples are to be 
matched, the three roles in most presentations are either men, women, 
and children or men, women, and dogs (for example, Knuth 1997, 64). 
This choice reiterates both normative family stereotypes and the posi-
tion of women in such families, while foreclosing the horizon of poly-
amorous relationships.

Yet another instance for this form of conservatism is the construct 
theoretically referred to as “chains” or “rotations.” This term refers to 
a set of couples, who exchange spouses according to a certain rule. The 
literature never describes this situation as “swinging” or “open rela-
tionships.” Rather, at that point the texts opt to revert to a technical 
gender-free language.

But nonorthodox sexuality does manage to occasionally emerge in 
mathematical discourse, despite its conservative tendencies, as the fol-
lowing quote demonstrates (the context is an attempt to reduce one 
variant of the marriage problem to another): “Such a reduction might 
involve turning each person into two persons, one male and one fe-
male (splitting one’s personality into its animus and anima)” (Gusfield 
and Irving 1989, 221). The splitting, which mathematically makes per-
fect sense, imposes some form of queerness on the underlying concept 
of gender.

One of the most important variations of the marriage problem deals 
with a situation where each man may marry several women. Some 
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authors refer to this variant as the “harem problem” (for example, Wil-
son 1996, 114). Most authors, however, shun the use of marriage ter-
minology for this variant. “It is convenient to use politically correct 
terms,” writes Bollobás (1998, 90), and turns to the student-college 
formulation of the problem, where each college should be matched to 
several students.

But this attempt to clean up the mathematical discourse from reac-
tionary gender imagery ends up generating progressive opportuni-
ties for cross-gendering. In translating the man-woman matching 
problem to a student-school matching problem, it is not clear which 
should play whose role. Thus, Teo et al. (1999) assign the women to 
the role of students, whereas Immorlica and Mahdian (2005) make 
the opposite choice. A person reading both papers, and trying to re-
tain the contents of both papers at once, is confronted with the neces-
sity to allow a simultaneous bivalent role allocation for men and 
women. This is a much more intricate endeavor to sustain than simply 
choosing between the mainstream allocation of gender roles and its 
inversion.

On some occasions, the gender imagery is confronted with other 
images, which may or may not reinforce gender role stereotypes. Thus, 
when Knuth (1997) demonstrates links between the stable marriage 
problem and other algorithmic problems (related to path finding and 
hash tables), the transformations rely on such statements as “The city 
. . . plays the role of the woman” and “The cell that each [man] occupies 
corresponds to the number of his girlfriend” (Knuth 1997, 35, 40). The 
image of the woman as a place that confines the man correlates with 
the ideological link between women and domesticity or women as 
ball-and-chain.

But such interactions between different problems do not necessarily 
work out so elegantly oppressive. Roth and Sotomayor (1990) regard 
the problem from an economic point of view and introduce the term 
“marriage market. ” This commodification of the matrimonial situa-
tion is reflected in another paper by such statements as “The cost for 
man i to be married with woman j is x(i, j ) and the cost for woman j 
to be married with man i is y( j, i)” (Dzierzawa and Oméro 2000, 322). 
Then, following its own statistical physics inspired logic, the paper 
goes on to transform cost to energy, as men and women become species 
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of particles. The effects of this semiotic drift in terms of gender repre-
sentations cannot be anticipated in advance.

As a somewhat optimistic final statement, I will include the follow-
ing quotation: “The man optimal matching corresponds to the mini-
mal P-set. . . . Mathematically there is no problem with this, but the 
reader may have to make a psychological transformation to avoid un-
consciously identifying (male) dominance with maximality” (Gusfield 
and Irving 1989, 75). Regardless of what a P-set is, this demonstrates 
how a perfectly viable mathematical transformation might impose a 
psychological reevaluation of ideologically tainted language.

But how seriously should we take these few and feeble mathemati-
cal lines of flight from gender role stereotypes? There is something a 
little too easy about such transformations. The fact that it is so easy for 
Knuth to write “It suffices to exchange the role of the men and the 
women and apply the theorem” (Knuth 1997, 57) stands in sharp con-
trast to the effort involved in actual change of extra-mathematical dis-
course and practice.

We could claim that the preceding effects of ideological replication 
and semiotic drift are confined to mathematical texts, and therefore 
have nothing to do with social change. We could then infer that we 
needn’t bother at all with the languages that science uses, because 
these languages are restricted to a confined textual or discursive “res-
ervation.” But anecdotes of classroom discussions of the marriage 
problem, which quickly deteriorated to an opportunity for venting 
the slut-shaming tendencies embedded in the male-dominated envi-
ronment of an undergraduate science course, may suggest otherwise. 
If we believe that there is some (however small) interaction between 
mathematical language and social reality (if only because it is spoken 
by real, at least somewhat socially functional people, who often teach 
students who don’t necessarily end up being mathematicians), then 
the semiotic drift imposed on gender role stereotypes by mathematical 
transformations should not be ignored.

Perhaps, then, we should encourage mathematicians to explore con-
ceptions that are feminist or queer. Perhaps we should encourage so-
cial and exact scientists to carry their latent and explicit ideological 
commitments through mathematics’ obscure transformations. Perhaps 
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this would lead us to explore new semiotic possibilities for confront-
ing the impossible impasses in our ways of speaking gender and/or 
science. Perhaps encouraging signifiers to cut across discursive sys-
tems where they do not, supposedly, “belong,” does have some thera-
peutic potential for our contemporary social malaise.
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C H A P T E R  5

Mathematics and Cognition

So far, we have looked at the manifestation of mathematics on 
the surface of its practice. But is there something hidden beneath the 
surface?

These days, it is hard to talk about ideal essences that lurk beneath 
surfaces. But it’s becoming more and more common to try to figure 
out how things work beneath the surfaces of our skulls. If we can 
observe constraints on mathematical thinking that are wired into our 
brains, then perhaps the Kantian synthetic a priori is vindicated, and 
perhaps our conceptual mathematical freedom is more limited than 
surface appearances lead us to believe. If there are cognitive con-
straints on mathematical activity, perhaps they supersede other, exter-
nal constraints on mathematical production.

This chapter will therefore engage some neuro-cognitive theories of 
mathematical concept formation. We will start with theories of ele-
mentary number processing (by Stanislas Dehaene and Vincent Walsh), 
and move on to more complex theories of mathematical concept for-
mation (Lakoff and Núñez, Walter J. Freeman III). There is a substan-
tial discrepancy between the former discussion of elementary number 
processing and the latter discussion of higher mathematics, but it 
seems that the division between modular and integrated approaches 
to cognition governs both debates. Therefore, a review of the former 
discussion does shed light on the latter, and it makes sense to tie the 
two debates together in this presentation. Finally, I tentatively explore 
a philosophical language, derived from Gilles Deleuze, which will 
try to express my take on things without presuming to be properly 
scientific.
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The Number Sense

Our starting point is an articulation of arithmetic cognition associated 
primarily with Dehaene. By the term “number sense,” Dehaene (2011, 
227) means the following:

•	 The human baby is born with innate mechanisms for individuating ob-
jects and for extracting the numerosity of small sets.

•	 This “number sense” is also present in animals, and hence it is indepen-
dent of language and has a long evolutionary history.

•	 In children, numerical estimation, comparison, counting, simple addi-
tion, and subtraction all emerge spontaneously without much explicit 
instruction.

•	 The inferior parietal region of both cerebral hemispheres hosts neural 
circuits dedicated to the mental manipulation of numerical quantities.

This number sense refers to such capacities as subitizing (detecting the 
cardinality of small collections), predicting the cardinality of a collec-
tion formed by combining two other small collections, and forming 
quantitative estimates for larger cardinalities. For example, rats can be 
trained to press a lever a certain number of times (with diminishing 
success as the number increases), monkeys can successfully estimate 
which tray with two separately presented piles of treats has a larger 
total number of treats, and very young babies show enhanced atten-
tion when two dolls separately go behind a screen, but only one is 
there when the screen is removed (compared to the attention given 
when the expected two dolls are revealed).

The neuro-cognitive problem is how these phenomena, as well as 
more advanced culturally acquired mathematical capacities, are im-
plemented in the brain. Dehaene’s answer is that these capacities most 
likely depend on neural circuits located in specific brain areas and 
dedicated to numbers. His claims are based on the usual tools of the 
trade: brain imaging of healthy people and observations of patients 
with localized brain lesions engaging in conscious and unconscious 
number-related experimental tasks.

Dehaene’s model consists of three elements:

[A] quantity system (a nonverbal semantic representation of the size and 
distance relations between numbers, which may be category specific), a 
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verbal system (where numerals are represented lexically, phonologically, 
and syntactically, much like any other type of word), and a visual sys-
tem (in which numbers can be encoded as strings of Arabic numerals). . . . 
[W]e propose that three circuits coexist in the parietal lobe and capture 
most of the observed differences between arithmetic tasks: a bilateral in-
traparietal system associated with a core quantity system, a region of the 
left angular gyrus associated with verbal processing of numbers, and a 
posterior superior parietal system of spatial and nonspatial attention. (De-
haene et al. 2003, 488)

The first circuit provides “a nonverbal representation of numerical 
quantity, perhaps analogous to a spatial map or ‘number line.’. . . This 
representation would underlie our intuition of what a given numerical 
size means, and of the proximity relations between numbers” (De-
haene et al. 2003, 489). The second “is part of the language system, and 
contributes to number processing only inasmuch as some arithmetic 
operations, such as multiplication, make particularly strong demands 
on a verbal coding of numbers” (Dehaene et al. 2003, 498). The third, 
“in addition to being involved in attention orienting in space, can also 
contribute to attentional selection on other mental dimensions that are 
analogous to space, such as time . . . or number” (Dehaene et al. 2003, 
498). This last system can deal with seriality or ordinality.

The three circuits show some unexpected forms of interaction. For 
example, when subjects are required to respond to number-related 
stimuli with their right or left hand (for example, press the right-hand 
key if a number stimulus is larger than 65 and the left-hand key if it is 
smaller—or vice versa), they tend to respond faster and better when 
the “larger” response is assigned to the right hand and “smaller” to the 
left. This is an example of the so-called SNARC effect (acronym for 
spatial-numerical association of response codes). It suggests that quan-
tity is mentally associated with spatial position, linking “larger” with 
“rightward.”

Despite these interactions, Dehaene tends to remain faithful to the 
hypothesis of a number-specific component in the brain. To explain 
the interactions between number responses and other dimensions (such 
as space or time), Dehaene argues the following:
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Our brain imaging research has revealed that it comes from a systematic 
“leakage” of neural activity in the parietal lobe. When we evoke a mental 
representation of some numerical magnitude, brain activation starts in the 
hIPS [horizontal intraparietal sulcus], but also expands into nearby re-
gions that code for location, size, and time. As a result, when we see a 
number, our space perception, and even our hand and eye movements, are 
affected by the slightly biased estimates that we make of these parame-
ters. . . . I posit that recent human inventions [such as advanced arithmetic] 
have to find their niche in a human brain that did not evolve to accommo-
date them. They have had to squeeze themselves into the brain by invad-
ing cortical territories dedicated to closely related functions. . . . [T]hese 
novel [mathematical] concepts can only be represented in the brain, at 
least in part, because existing functions in the nearby cortex are recycled 
for this new use. Thus, arithmetic invades the nearby areas coding for 
space and eye movements. (Dehaene 2011, 245–46)

So by this view, we start with a number-specific circuit. Subsequently, 
human constructs and social training expand this number circuit, 
forcing it onto neighboring circuits devoted to spatial attention and 
symbol processing.

A dissenting view can be found in Vincent Walsh’s ATOM (acronym 
for a theory of magnitude). The main tenets of this theory are (Walsh 
2003, 484):

•	 Space, quantity and time are linked by a common metric for action.
•	 Time and quantity estimation operate on similar and partly shared ac-

cumulation principles.
•	 The inferior parietal cortex is the locus of a common magnitude 

system.
•	 The apparent specializations for time, space, and quantity develop from 

a single magnitude system operating from birth.

The main bone of contention with respect to Dehaene’s number sense 
is whether number is an innate given that is later associated to space, 
time, and other quantities or a subsequent specialization that emerges 
from a generic sense for quantity. According to Dehaene, for exam-
ple, the SNARC effect is the result of an interaction between initially 
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independent number and space circuits. For Walsh, SNARC is a spe-
cial case of SQUARC (acronym for spatial-quantity association of re-
sponse codes), which derives from the fact that all kinds of quantities 
are processed by the same brain system (Walsh 2003, 487).

Walsh’s position derives from a central tenet of embodied cogni-
tion: that our cognitive capacities reflect our embodied actions. Since 
we can’t move in space without moving in time, and since counting is 
a temporal process most often applied to spatially arranged elements, 
space, time, and number should be originally interconnected.

[S]haking hands, kissing, catching, throwing, playing an instrument, gath-
ering kindling or paying by cash all require spatiotemporal coordination. 
Behavior may be spatial or temporal in a laboratory, but in the real world 
they originate in the same coordinate system applied to all magnitudes. 
(Bueti and Walsh 2009, 1836)

This fact of coordination between various kinds of magnitudes means 
that the brain does not initially distinguish between these dimensions. 
“In other words, the parietal cortex transformations that are often 
assumed to compute ‘where’ in space, really answer the questions 
‘how far, how fast, how much, how long and how many’ with respect 
to action” (Walsh 2003, 486). It is only at a later stage, when learned 
concepts of number enter the field, that this action-magnitude brain 
component is appropriated to dissociate number concepts from the 
integrated action-magnitude system.

But the disagreement extends further than that. The question is not 
just whether number specification precedes or follows space/time/
quantity associations. Scientists are also divided on whether we pro-
cess numbers abstractly (that is, independently of how they are repre-
sented) by a pure number module, or via different brain mechanisms 
associated with different number representations (verbal, visual, and 
so on) that relate to an integrated action-magnitude system.

According to Walsh, when number concepts emerge from the action-
magnitude system, they do not cohere to form a category-specific 
circuit independent of how numbers are represented. Instead, they 
form various components dedicated to specific number representa-
tions. These different representation-specific components build on the 
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action-magnitude circuits without integrating into an abstract mental 
number representation.

If we prefer to put the question in functional terms, rather than in 
terms of neuro-physiology, then scientific interpretation is divided on 
whether “behavior depends only on the size of the numbers involved, 
[or] on the specific verbal or nonverbal means of denoting them” (De-
haene et al. 1998, 356). In computational terms, we may ask whether 
we perceive stimuli via representation-specific circuits but process 
them by means of a representation-independent circuit, or whether 
the processing is also carried out by representation-specific circuits.

Dehaene’s challenge is to explain how, despite the distinct and 
purely numerical processing circuit, we manifest such strong relations 
between different expressions of magnitude (as in SNARC). Walsh’s 
challenge is to explain how, despite the representation-specific pro-
cessing that builds on a generic action-magnitude system, we manage 
to develop a unified and abstract understanding of number.

Dehaene meets his challenge by claiming that “the overlapping ac-
tivation need not reflect a lack of neural specialization. Rather, analog 
quantities such as number, location, size, luminance, or time may well 
be coded by neuronal assemblies that are specialized, yet intermixed 
within the same voxels [strongly associated small sets of neurons]” 
(Dehaene 2009, 241). So the treatment of each kind of magnitude (most 
notably, abstract numbers) is distinct, but the neurons are so close to-
gether that they interact and can’t be told apart by current imaging 
techniques.

Walsh, in turn, claims that “humans do not, as a default, represent 
numbers abstractly, but can adopt strategies that, in response to task 
configuration and demands, can create real or apparent abstraction.” 
(Cohen Kadosh and Walsh 2003, 326). This stance follows Barsalou’s 
tenet that “abstraction is simply a skill that supports goal achievement 
in a particular situation” (Barsalou 2003, 1184), pointing out that “dis-
sociations between [various kinds of magnitudes] probably tell us 
more about the strange things we can make people do in experiments 
rather than how the brain operates in the real world” (Bueti and Walsh 
2009, 1836). Abstract number is, in this view, a complex epiphenome-
non, not something embedded in the brain.
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At this point, the question becomes undecidable, at least given the 
limitations on experimental design and the flexibility of scientific in-
terpretation. The confrontation of Cohen Kadosh and Walsh’s argu-
ment for representation specific processing (2009) with the responses 
of various scientists that challenge their argument makes it clear that 
the current experimental data can, with some effort, support either 
position.

In fact, the question might not be very well posed. Suppose for ex-
ample, that some neural microsystems are dedicated to numbers and 
process quantities independently of representation, while others pro-
cess them in a manner that depends on specific forms of representa-
tion and generic action-magnitude systems; but suppose, crucially, that 
none of these circuits ever work, or can be made to work, without the 
others joining in and interacting with it. More specifically, suppose 
that what each of those microsystems does is not a whole operation 
(for example, take two numbers and yield their sum), but some prepa-
ratory subprocess (for example, break numbers into smaller numbers 
for further processing) that has to combine with abstract and non
abstract, dedicated and generic circuits to produce meaningful results. 
Or suppose that the number-dedicated abstract circuit always oper-
ates in conjunction with at least one of the representation-specific cir-
cuits (that build on some generic action-magnitude function), and that 
a correct result depends on a feedback loop between the two kinds of 
circuits. Suppose, therefore, that if you shut down either the abstract 
or the nonabstract, the dedicated or the generic processing circuits, 
then the whole systems fails to produce a meaningful response (even 
if we set aside the input/output issue). Under such assumptions, we 
would have some circuits doing abstract processing, but not a perfor-
mative manifestation of an abstract number sense in real live humans. 
The notion of abstract processing would then be an artifact of neuro-
computational analysis—but one that is nevertheless grounded in neuro-
computational reality! (If I read them correctly, the response of Piazza 
and Izzard to Cohen Kadosh and Walsh [2009] may be pointing in this 
direction.) In such circumstances, deciding for or against abstraction 
or number dedicated processing is not a well posed problem.

My point here is that the very formulation of the problem seems to 
assume a commitment to conceptual distinctions that do not necessar-

www.TechnicalBooksPdf.com



 Mathematics and Cognition  •  135

ily shape brain performance. Indeed, if we follow the superposing 
interactions explored in previous chapters (money and numbers, nu-
merical and formal variables, graphs and weddings, and so on), we see 
that some seemingly clear conceptual distinctions cannot be neatly 
sorted out when applied to mathematical practice.

Before we bring up alternative scientific formulations of the prob-
lem of mathematical cognition, let’s try to think of it in historical, 
rather than neuro-cognitive terms. One common way of telling the 
history of numbers is the following. First, there was pure Greek geom-
etry. In this strand of geometry, lines did not have numerical lengths. 
Indeed, throughout Euclid’s elements, no line segment is assigned a 
numerical length (the arithmetical books VII–IX do deal with num-
bers, but not as representations of geometrical entities). The only ways 
to relate geometrical magnitudes to numbers was via ratios: one could 
say that the ratio between this line and that line is as the ratio be-
tween, say, 1 and 2. But this does not mean that lines have numerical 
lengths (indeed, the ratio of 1 to 2 can be expressed as the ratio of 2 to 
4, or 3 to 6, and so on). The realm of geometrical magnitudes and the 
realm of numbers were distinct.

The profound observations of Unguru and Rowe (1981, 1982) make 
it perfectly clear (in contrast to the then prevalent hypothesis) that 
classical Greek geometry was not a covert form of arithmetic or alge-
bra, and that arithmetic and proto-algebra (for example, Diophantine 
algebra) were carefully distinguished from geometry by the Greeks. 
However, in a slow and gradual process, Greek geometry was histori-
cally arithmetized and algebraized, until the eventual emergence of an 
integrated algebraic geometry in the seventeenth century (Netz 2007; 
Corry 2013). The preceding phylogenetic story fits Dehaene’s ontoge-
netic picture: we start with distinct circuits for number and space, but 
these circuits can be interrelated as we evolve.

However, this is not the only history out there. If we try to retrace 
the origins of Arabic algebra, and peel away the Euclidean justifica-
tions imposed on it by al-Khwarizmi and his successors, we find that 
Arabic algebra has two sources. One is the Babylonian quadratic cal-
culations with rectangles, which derived the sides of rectangles from 
combinations of their sides, diagonal, and area. The other is the manip-
ulations of unknown numbers in linear equations (possibly of Persian 
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or Indian origin; see Høyrup 1990, 1998; Oaks and Alkhateeb 2005). So 
when we try to trace Arabic algebra back, we find that even after we 
separate it from the influence of Greek geometry, we have geometry 
integrated into its Babylonian source.

So the candidate for a pure arithmetic/algebra is the tradition of 
linear manipulations of unknown quantities (for example, given the 
price of 2 melons and 1 orange, and the price of 2 oranges and 1 melon, 
figure out the price of each). Scarcity of sources makes it difficult to 
say much about this tradition, but it is certain that linear manipula-
tions of unknowns are not independent of geometrical measurements. 
Even if the motivation for these techniques was purely commercial, 
such obvious applications as pricing fabrics or land plots conflate the 
unknown arithmetical quantity with the way one quantifies fabric or 
land: according to their geometric length or area (this narrative is fur-
ther complicated by bringing up another question: given the narrative 
of chapter 2 , should we think of money as a distinct quantitative cat-
egory, or simply as number?).

So at the root of Arabic algebra, we find a conflation of arithmetic 
and geometric magnitudes, whereas in Greece we find a careful dis-
tinction between geometry and algebra. How can we put these stories 
together? The missing link is the practical mathematics that thrived in 
Greece as elsewhere, evolving from crafts, architecture, engineering, 
land measurement, and astronomy, where lines and numbers had al-
ways been conflated (Asper 2008; Netz 2007, 113). If this was the case, 
then the supposedly pure geometry and pure arithmetic of the Greeks 
were intellectual abstractions that grew from a world of mixed practi-
cal measurements of time, space, and cardinality. Now this phyloge-
netic narrative sounds much more like Walsh’s ontogenetic story.

History didn’t leave enough evidence to pinpoint the very moment 
of discovery or invention of concepts of magnitude. But again, as in 
the ontogenetic context, we must accommodate the possibility that the 
question is not well posed, and that no such moment existed. Indeed, 
the very notions of spatial magnitude and number may have emerged 
from a history of mixed and separated representations of various prac-
tices involving correlated and uncorrelated manifestations of space, 
time and cardinality. Notions of magnitude and number may have 
become notions “too late” in history—too late, in the sense that they 
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become stable and unified cultural artifacts only after a long history of 
partly mixed and partly segregated, partly abstract and partly con-
crete forms of representations for specific practical contexts.

More precisely, if a unified concept of number emerged from coordi-
nating different kinds of counting practices (some languages have dif-
ferent counting systems for animate objects, inanimate objects, money, 
time, ordinals—even English still fails to pluralize some countable en-
tities, such as fish and sheep, and uses different words for cardinal and 
ordinal numbers), if a unified concept of spatial magnitude emerged 
from coordinating different kinds of measuring practices (using differ-
ent terms, different bases, different upper limits, and different levels 
of precision), and if some of these counting practices had been mixed 
with measuring practices, while others were strictly segregated, then 
there’s no unequivocal answer to whether numbers and spatial or 
temporal magnitudes, when each finally became a distinct linguistic-
cultural notion, should be thought of as distinct or correlated.

Mathematical Metaphors

In the last few paragraphs, I have already committed a methodologi-
cal faux pas. I projected on a history of evolved mathematical prac-
tices a neuro-cognitive debate that relates to the most elementary pro-
cessing of magnitudes. I allowed myself this transgression because 
both debates seem to be organized around the question of modularity: 
is arithmetical processing an abstract and independent module, or is 
it  something that emerges from nonspecialized quantitative knowl-
edge and anchored to specific representations? I tried to explain why 
the question might not be well posed. I argued that the emergence of 
an arithmetical domain may arrive “too late,” both onto- and phyloge-
netically, if by the time the domain stabilizes cognitively or culturally, 
it already conflates some specialized and some nonspecialized subprac-
tices or brain circuits, which, considered in isolation, are not enough to 
count as self contained mathematical domains.

In order to relate the history of mathematics to neuro-cognition in 
a more viable manner, we must look into theories that explicitly en-
gage the formation of higher mathematical concepts. But, as we will 
see, the context of higher mathematical cognition will raise concerns 
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similar to those that emerged in the context of the number sense. The 
previous section, then, prepares us for the debate that follows.

The most widely acknowledged cognitive theory of higher mathe-
matics is the theory of cognitive metaphor as applied to mathematical 
concept formation by Lakoff and Núñez (2000). This theory depends 
on the notion of “structured connectionism” in the brain, according to 
which “[n]euronal groups (of size, say, between, 10 and 100 neurons) 
are modeled as “nodes” which are meaningful and which enter into 
neural computation” (Lakoff 2008, 18).

Nodes have to do with mental simulations of embodied actions: “A 
meaningful node is a node that when activated results in the activa-
tion of a whole neural simulation and when inhibited inhibits that 
simulation” (Lakoff 2008, 19). These nodes give rise to “mental spaces.” 
Each mental space is “a mental simulation characterizing an under-
standing of a situation, real or imagined. The entire space is governed 
by a gestalt node, which makes the mental space an ‘entity’ which, 
when activated, activates all the elements of the mental space” (Lakoff 
2008, 30). Lakoff’s examples of mental spaces include the understand-
ing of such situations as “the U.S. during Clinton’s presidency” and “a 
day in the journey of a fabled monk.”

The notions of simulation and mental space are dominated by an 
objectification of action-processes: an action is made to correspond 
to a localized entity, dominated by a unified object—the gestalt node. 
Note, however, that a single neuron may partake in different nodes or 
spaces. Therefore, the theory does allow for a certain relaxation of the 
hierarchical structure of objectified action processes.

Moreover, what the theory of cognitive metaphors discusses is not 
so much “mental spaces” as “conceptual domains.” A concept is de-
fined as “something meaningful in human cognition that is ultimately 
grounded in experience and created via neural mechanisms” (Lakoff 
and Núñez 2000, 48), so it is grounded in mental spaces. Examples for 
conceptual domains include “physical putting in,” “love,” “travel,” “the 
butcher stereotype,” and so on. In the context of mathematics, domains 
include “concrete object collections,” “numbers,” “geometry,” “sets,” and 
so on. But a definition that characterizes the scope of intellectual do-
mains and provides criteria for individuating them (saying where one 
ends and another begins) is lacking. The literature commonly defines 
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a conceptual domain as “any coherent organization of experience” 
(Kövecses 2002, 4). This is obviously a very vague definition, which is 
hard to use for characterization or individuation. I will return to this 
vagueness later.

The basic notion of the theory of cognitive metaphors is conceptual 
metaphor:

a grounded, inference-preserving cross-domain mapping—a neural mecha-
nism that allows us to use the inferential structure of one conceptual do-
main (say, geometry) to reason about another (say, arithmetic). (Lakoff and 
Núñez 2000, 6)

Lakoff explains that “[i]nferences occur when the activation of one 
meaningful node or more results in the activation of another mean-
ingful node” (Lakoff 2008, 19). Metaphors are instantiated in the brain 
by metaphor circuits, which activate links that make target domain 
nodes fire when source domain nodes fire. Since a certain combination 
of source domain activations can cause a source domain inference ac-
tivation, and since the metaphor circuit further activates correspond-
ing nodes in the target domain, an inference can be transferred from 
the source domain to the target domain. So, if we have a “number is a 
point on a line” metaphor, the inference “any two points have another 
point between them” can yield the inference “any two numbers have 
another number between them.”

In fact, while this is not stated explicitly in the definitions quoted 
earlier, Lakoff and Núñez’s conceptual metaphors can carry not only 
inferences, but also mathematical entities from a source domain to a 
target domain. For example, the diagonal of a square with unit side can 
be carried into the realm of arithmetic via a “magnitude is number” 
metaphor and become √•2, even if before this metaphorical transfer 
arithmetic had no corresponding entity.

Note that metaphors are not necessarily symmetric—the neural ac-
tivation may be one directional. Moreover, even when thinking in the 
direction of the metaphor, a target domain inference that is inhibited 
by target domain knowledge (that is, inconsistent with the target do-
main) will not be forced by a metaphor from the source domain. So the 
metaphorical transfer of inferences may be partial. In fact, the entire 
metaphor may be inhibited in some situations. Indeed, according to 
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the theory, a metaphor circuit is governed by a gestalt node whose 
inhibition can prevent the metaphor from applying. This architecture 
provides the theory with fail-safe mechanisms that allow it to be 
adapted to empirical exceptions.

The next major notion of the theory is conceptual blend:

the conceptual combination of two distinct cognitive structures with fixed 
correspondences between them. . . . This blend has entailments that follow 
from these correspondences, together with the inferential structure of both 
domains. (Lakoff and Núñez 2000, 48)

In neural terms, “A blend is an instance of one or more neural bind-
ings” (Lakoff 2008, 30), where a binding “is responsible for two or 
more different conceptual or perceptual entities being considered a 
single entity. . . . It is not known just how neural binding operates in 
the brain. One hypothesis is that neural binding is the synchronous 
firing of nodes” (Lakoff 2008, 20). The difference between metaphor and 
binding is the difference between explaining integer addition in terms 
of stepping along the number line (using the “number is a point on a 
line” metaphor) and the Cartesian plane, where points and pairs of co-
ordinates are considered to be a single entity, mentally bound together. 
Mental binding, like metaphor can also be conditioned or relaxed.

Examples of a conceptual metaphor and a conceptual blend are 
available in the following analysis of the number line (table 5.1). Ac-
cording to Lakoff and Núñez, the number line is a combination of (1) a 
conceptual blend of the continuous line and a set of elements resulting 
in a conception of the line as the set of its points, and (2) a conceptual 
metaphor projecting this blend on arithmetic, importing geometrical 
and set theoretical inferences to the realm of numbers.

My attraction to mathematical metaphors should be obvious. I have 
explored throughout how knowledge is transferred among domains to 
form mathematical practices (economy and numbers, analytic func-
tions and formal power series, gender stereotypes and graph theory, 
and so on). But given that metaphors and blends can be conditioned 
and relaxed, it may seem that the entire theory is trivial. You can sup-
pose any metaphor you want. Whenever a metaphor fails to work, you 
could simply claim that it’s “inhibited” and ignore it. But the theory 
does include some components that safeguard against such triviality.
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First, it is crucial for the theory that conceptual metaphors emerge 
from ground metaphors. Ground metaphors carry into mathematical 
domains (for example, arithmetic) such embodied experiences as form-
ing collections of objects, subitizing (perceiving small quantities with-
out counting), and matching collections in a one-to-one correspon-
dence. Anchored in ground metaphors, the chain of mathematical 
metaphors is uniformly directed: from the concrete to the abstract, 
and not vice versa.

Another criterion that makes the theory of metaphor less trivial is 
the criterion of best fit.

What determines “fit”? Maximizing the number of overall neural bind-
ings, including context and overall knowledge, without contradiction, that 
is, without encountering any mutual inhibition. A node A fits a complex 

Table 5.1. Numbers Are Points on a Line (Fully Discretized Version)

Source Domain Target Domain

The Space-Set Blend

Naturally Continuous 
Space: The Line Sets Numbers

The line. A set. A set of numbers.
Point-locations. Elements of the set. Numbers.
Points are locations on 

the line.
Elements are members 

of the set.
Individual numbers are 

members of the set of 
numbers.

Point-locations are 
inherent to the line 
they are located on.

Members exist 
independently of the 
sets they are in.

Numbers exist inde-
pendently of the sets 
they are in.

Two point-locations are 
distinct if they are 
different locations. 

Two set members are 
distinct if they are 
different entities.

Two numbers are distinct 
if there is a nonzero 
difference between them.

Properties of the line. Relations among 
members of the set.

Relations among numbers.

A point O. An element 0. Zero.
A point I to the right of O. An element 1. One.
Point P is to the right of 

point Q.
A relation P > Q. Number P is greater than 

number Q.
Points to the left of O. The subset of elements 

x, with 0 > x.
Negative numbers.

The distance between O 
and P.

A function d that maps 
(O,P) onto an 
element x, with x > 0.

The absolute value of 
number P.

Source: Adapted from Lakoff and Núñez (2000), 281.
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network B better than complex network B′ if the strength of neural bind-
ings one can create between A and B without mutual inhibition is greater 
than with B′. (Lakoff 2008, 24)

The principle of best fit is derived from Hebb’s law, which in Carla 
Schatz’s catch phrase reads: “Cells that fire together, wire together.” 
Bad metaphors, which require frequent inhibitions (namely, many 
cases where corresponding nodes are inhibited from “firing together”), 
won’t produce strong neural links. This yields a sort of natural selec-
tion among metaphors.

The test for the theory of mathematical metaphor is therefore its 
ability to account for as much mathematical knowledge as possible, 
while preserving as many inferences as possible, and building from 
the concretely embodied to the abstract.

Some Challenges to the Theory of Mathematical Metaphors

The reception of the theory of mathematical metaphors was rather 
critical. Reviewers claimed that it was poorly anchored in empirical 
cognitive science and anthropological observations (Dubinsky 1999; 
Goldin 2001; Madden 2001; Ernest 2010); that its philosophical argu-
ment was an attack against straw-men (Gold 2001; Henderson 2002); 
that it failed to distinguish different layers of mathematical knowl-
edge (Sinclair and Schiralli 2003; Ernest 2010); that its attempt to draw 
unique metaphorical lineages of mathematical ideas was too narrow, 
reflecting post hoc textbook reconstructions rather than historical 
cognitive processes (Dubinsky 1999; Goldin 2001; Sinclair and Schiralli 
2003; Schlimm 2013); and that conceptual metaphors can only account 
for a limited portion of mathematical knowledge formation, as they 
neglect cognitive processes such as generalization, abstraction, formal 
manipulation, invariance, inversion, and metonymy (Dubinsky 1999; 
Sinclair and Schiralli 2003; Ernest 2010; Mason 2010).

Despite these critical observations, the book is often cited and 
highly influential. One of the reasons for its success is its fundamental 
insight: it makes sense to think about mathematics in terms of a trans-
fer of ideas between domains. But the book’s concept of metaphor is 
far too thin and rigid to account for mathematical knowledge. In other 
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words, the constraints that it imposes on mathematical practice are far 
too strong to reflect any really existing mathematical culture.

In this section, I will challenge the theory on several grounds. I will 
first argue that the notion of “best fit” is severely underdetermined, 
and cannot impose the clear and distinct hierarchical organization 
that the theory wishes to impart. Then I will challenge the notion of 
“conceptual domain,” and argue that the architecture of conceptual 
domains must be thoroughly revised. Finally, I will challenge the di-
rectionality of the theory (from the concrete to the abstract) and argue 
that the entire theory depends on metaphorically imposing an abstract 
formal mathematical model on concrete mathematical practice. The 
next chapter will provide some historical case studies to further estab-
lish these critiques.

Best Fit for Whom?

The following vignette is brought by Lakoff and Núñez to show how 
some metaphors are more “normal” than others—that is, provide a bet-
ter fit with the various connections between embodied experience and 
other mathematical metaphors. Specifically, they explain an apparent 
paradox by suggesting that the sense of paradox is imposed by a math-
ematical metaphor that is in conflict with everyday experience. They 
point out that a different choice of metaphor would dissolve the sense 
of paradox.

The apparent paradox—a well-known folk-mathematical curiosity, 
appearing in a different version in a letter written in 1931 by Luzin to 
Vygodskii (along with a beautiful account of the reification of infini-
tesimals from the perspective of a struggling student; see Demidov 
and Shenitzer 2000)—concerns the following situation. Consider a se-
quence of bumpy curves drawn over a horizontal unit segment. Each 
curve consists of a horizontal row of connected congruent half circles. 
The radii of the half circles diminish as we move from one curve to the 
next. This sequence of curves converges uniformly to the unit segment 
(see figure 5.1), where “uniform convergence” means that the maximal 
distance between the horizontal segment and the points above it in a 
given curve tends to zero as the sequence of curves unfolds. But de-
spite the uniform convergence of the curves to the segment, the length 
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of all the curves remains π/2, whereas the length of the limit segment 
is 1. In other words, despite the convergence of the curves to the seg-
ment, the lengths of the curves do not converge to the length of the 
segment.

Lakoff and Núñez explain this apparent paradox by claiming that 
the metaphors involved in conceiving the uniform convergence of 
curves violate our expectations. Our “normal expectations” assume 
that length is an inherent property of a curve, and entail that “[n]early 
identical curves should have nearly identical properties,” and so nearly 
identical lengths (Lakoff and Núñez 2000, 330). Therefore, according to 
the authors, uniform convergence is not a “normal” conceptualization 
of near identity of curves. In other words, it violates the requirement 
of best fit.

But why consider length an “inherent property” of a line, as op-
posed to other, supposedly accidental, properties? According to Lakoff 
and Núñez, this follows from our experience of measuring curves 
(such as the bumpy curves here) ever more precisely by using ever 
shorter measuring sticks. Given this measurement practice, we only 
feel that the bumpy curves are nearly identical to the limit (here, 

Figure 5.1: The bumpy curves, no matter how “flat” they become, are always of 
length π/2, whereas the straight limit segment (0,1) is of length 1. Revised from 
Lakoff and Núñez (2000), 329.

Second bumpy curve

Third bumpy curve

Limit segment

First bumpy curveFirst bumpy curve
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straight) line segment when the ever-shrinking sticks we use to mea-
sure them (that is, the tangent segments approximating the bumpy 
curves) become nearly parallel to the sticks we would use to measure 
the limit (straight, horizontal) line segment. But in figure 5.1, this cri-
terion is violated: the measuring sticks for the bumpy curves would 
keep changing their directions as we move along the curves (even when 
the bumps are very small), and would never remain nearly parallel to 
the horizontal limit line. Therefore, saying that the bumpy curves con-
verge to the straight line is—albeit mathematically tenable—a confus-
ing metaphorical use of the concept of near identity or convergence; 
hence the sense of paradox.

To respect our normal expectations and avoid the confusion, our 
convergence concept for curves should be, according to Lakoff and 
Núñez, the so-called C 1 convergence, where both the points on the 
curves and their tangents (or derivatives or directions of short mea-
suring sticks) are nearly those of the limit segment. If we were to use 
this metaphorical extension of the concept of convergence, we would 
not say that the bumpy curves converge to the straight line, and no 
sense of paradox would ensue.

But I, for one, have never measured a curve with shrinking measur-
ing sticks. I doubt that this “embodied experience” is very often actu-
ally embodied. For example, if the bumpy curve represented a fence, 
then uniform convergence would definitely fit the experience of near 
identity between the fence and ground from the point of view of some-
one who tried to jump over this fence. Seamstresses may have a differ-
ent experience of nearly identical curves, say when they sew a thread 
in loops around a hemline. In that case, the length of the approximat-
ing curve (the thread) is “normally” expected to exceed the length of 
the approximated curve (the hemline) even if the former is sewn very 
tight, almost superposed over the hemline—and no sense of paradox 
ensues. Another “normal” expectation may be that of someone push-
ing a cart along a road shaped like the bumpy curves. There, the sec-
ond derivative has to do with the effort required to push the cart, and 
is likely to be a crucial component of embodied experience, precluding 
an experience of near identity if we had only C1 convergence. The dis-
tinction between normal and abnormal uses of metaphors turns out to 
be rather contingent.
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This example shows that metaphorical “best fit” depends on con-
text, and may change with the particular embodied practices of dif-
ferent people. However, if, like Lakoff and Núñez, we claim that the 
“precise characterizations given of metaphorical mappings, blends, 
and special cases reveal real, stable, and precise conceptual structure” 
(Lakoff and Núñez 2000, 375), then one indeed has to choose a stable 
and precise “normal” core, and brand anything that deviates from it as 
abnormal.

To obtain such a “normal” core, one indeed would have to declare 
that “Behavior, performance, and competence of particular individuals 
are secondary” (Lakoff and Núñez 2000, 111). It is only then that one 
could exclude form the discussion of “mathematics itself” the occa-
sional oddball (for example, Cantor, who nevertheless was analyzed 
by Núñez 2005) or struggling schoolchildren (whose metaphors are 
insightfully analyzed by Presmeg 1992). But then we rob mathematical 
metaphors of one of their most productive features: their open-ended 
interpretability (Dubinsky 1999) and their useful ambiguities (to bor-
row Emily Grosholz’s term) as explored in this book.

This “normalization” is not a marginal aspect of the theory of math-
ematical metaphors. In the next chapter, we will see a similar attempt 
to normalize mathematical thought in the context of mathematical in-
finities, which Lakoff and Núñez strive to reduce to a single metaphor. 
(Schlimm [2013] offers a similar critique in the context of set theory.) 
And while Lakoff and Núñez reconstruct a single trajectory for the 
formation of the concept of number, Ernest insists that “there is not a 
single, uniquely defined semiotic system of number, but rather a fam-
ily of overlapping, intertransforming representations constituting the 
semiotic systems of number” (2006, 94). The theory of mathematical 
metaphor, in its current form, risks impoverishing mathematics and 
imposing on it unnecessary normative constraints.

What Is a Conceptual Domain?

In my historical analysis of geometry, arithmetic, and algebra, I sug-
gested that a narrative starting from the primitive domains of geome-
try and number, later blended into algebraic geometry, is problematic. 
Geometric and arithmetic treatments of magnitudes have always been 
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subject to a complex negotiation between integration and segregation, 
and the same is valid for other case studies considered in this book. 
Instead of individuation criteria, conceptual domains have varying 
levels of separation or integration in given historical and cultural set-
tings, gleaned pragmatically from the codependence of their respec-
tive practices.

This account of conceptual domains precludes a clear and distinct 
hierarchy evolving unidirectionally through metaphors and blends. 
But if such a structure is precluded, what is it between which concep-
tual metaphors can take place?

Mowat and Davis (2010) suggest that instead of hierarchically or
ganized conceptual domains, we could think of mathematics in terms 
of a nonlinear network of concepts connected by superimposing met-
aphors. They further suggest that the more metaphorical links one 
establishes between concepts, the more robust the mathematical net-
work becomes. Instead of a competition between different metaphors 
over “best fit,” the robustness of the structure would follow from the 
interaction of many different, even partly contradictory, metaphors.

This image has an interesting impact on the relation between con-
ceptual domains, as the exclusion of unidirectional hierarchy allows 
for circularities. For example, a domain A, metaphorically linked to a 
domain B, which is in turn metaphorically linked to C, which links 
again to A, generates a circular relation between domains (which may 
explain the hesitating integration/segregation of, say, arithmetic and 
geometry). In fact, C may even be a subdomain of A, violating even 
internal hierarchies, as the entire domain may be metaphorically 
shaped by its subdomain and vice versa.

But this still does not sort out the problem of individuating domains. 
We may indeed find that a conceptual domain is itself composed of 
a  network of linked subdomains similar in structure to the super-
domain, and these subdomains, in turn, may turn out to consist of sim-
ilarly structured and linked subdomains, and so on. But can we truly 
imagine mathematical concepts as endlessly decomposable with no 
final constitutive elements? This seems to make no sense. If mathemat-
ics takes place in an embodied neural mechanism, then a mathematical 
domain must correspond to a bunch of neurons, and as we descend into 
subdomains, we must hit some minimal functional neural structure. In 
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any sequence of embedded Russian Matryoshka dolls, there must al-
ways be a smallest doll.

But this holds only if we think inside the box. If our thinking is not 
something that happens strictly inside neural components enclosed 
in the boxes mounted over our shoulders, but something that depends 
on the interaction between neurons and a world, then things can turn 
out differently.

Several theses relate to the title “embodied cognition” under which 
the theory of mathematical metaphors positions itself. One of them 
is  “offloading cognitive work onto the environment” (Wilson 2002; 
Pfeifer and Bongard 2006). We do not compute strictly inside our 
heads, but use the environment for calculation. Think, for example, of 
trying to move a sofa through a staircase: we set it in an angle that 
seems to be more or less OK, push until we bump into something, re-
adjust, backtrack—that is, offload computational maneuvers onto the 
environment instead of calculating a trajectory in advance. In a more 
strictly mathematical context, Landy et al. (2014) show how cognitive 
work related to elementary algebra (for example, which operation in 
a formula to perform first) is offloaded onto the setting and spacing 
mathematical signs.

Now, even if our brains do have innate minimal mathematical neu-
ral structures (such as Dehaene’s or Walsh’s circuits), changes in our 
signs, tools, and environments refute the assumption of stable mini-
mal embodied quantity components. Indeed, a minimal mathematical 
component would be the application of a minimal neural structure to 
an element of the environment. But our environment does not reduce 
to minimal components determined once and for all—humans reform 
their signs, tools, and worlds as they go along.

De Cruz and de Smedt (2010) point out that the transition from im-
precise innate mathematical abilities to more precise formal ones is not 
a rigid isomorphism similar to Lakoff and Núñez’s metaphor tables. 
This transition has to do with turning imprecise innate abilities into a 
more rigid arithmetic system via signs, tools and practices of measure-
ment and inscription involving body parts, tokens, words, or written 
symbols (De Cruz 2008; see also Mason’s (2010) note on the role of 
cards in embodying the notion of permutations and Ursula Klein’s 
(2003) notion of “paper tools”). They even suggest evidence that the 
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means we use to represent numbers affect the processes inside our 
brains and reform their function.

In chapter 2, we saw how mathematics was changed by economic 
practices, and in chapter 4, we saw how gender signs helped form 
mathematical knowledge. The historical treatment of algebra and ge-
ometry in the next chapter further demonstrates how mathematical 
metaphors depend on signs and tools. I mention here only briefly that 
Descartes’s mathematics is intimately related to his new tools for con-
structing curves, without which he could not have solved some previ-
ously intractable algebraic problems (Bos 2001). The same is true for 
Bombelli’s right-angled-ruler-based constructions and, more gener-
ally, his engineer’s perspective (Wagner 2010b). Piero della Francesca, 
who wrote notable mathematical treatises, is much better known as a 
Renaissance artist, and his embodied mind was immersed in quantita-
tive spatial representation techniques (Field 2005). Arithmetic, alge-
bra, and geometry are not only a cognitive and conceptual blend; 
they’re a blend that depends on the tools of the trade and the way they 
shape minds.

Indeed, even the most basic, supposedly universal tools change their 
role depending on what is counted, for what purpose, and in which 
context. Subitizing and finger counting in song-play is different from 
if “your life depended on it,” to use Walkerdine’s (1977) expression for 
children street peddlers. The semiotic role of fingers and their use in 
calculation also differs in various elementary everyday contexts (Walk-
erdine 1977, 67).

Lakoff and Núñez recognize a historico-technological dimension of 
mathematics (2000, 359–62), but this dimension hardly ever comes up 
in their discussion. Indeed, they anchor mathematics to an embodied 
mind that has hardly anything to do with the vicissitudes of practice. 
Mathematics involves our bodies, but since these bodies cannot do pre-
cise mathematics without signs and tools, and since the choice of signs 
and tools is open ended, the limits of conceptual domains are more 
fluid than Lakoff and Núñez allow for.

A conceptual domain is, therefore, not a minimal unit that’s located 
in the brain or even in the naked body. It is a fluid combination of neu-
ral components, bodies, signs, and tools. Indeed, if neural mechanisms, 
signs, and tools are kept apart, no mathematical work can be done. 
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Mathematical metaphors operate not in a rigid hierarchical system of 
domains, but in a network of fluid, open ended temporary constella-
tions of neurons, bodies, signs, and tools.

In Which Direction Does the Theory Go?

The theory of mathematical metaphors assumes that they are grounded 
in the body. This means that they necessarily go from the concrete to 
the abstract. In particular, since geometry represents concrete spatial 
experience and numbers represent collections of objects, while alge-
bra is a symbolic abstraction, metaphors should go from the former to 
the latter, not in the opposite direction.

In reality, this is not always the case. The discussion of geometry 
and algebra in the following chapter will prove that inferences some-
times go from algebra to geometry. But here let us consider the follow-
ing example. One famous eighteenth-century identity, endorsed by, 
among others, Euler and Leibniz, is the following: 

	 1 – 1 + 1 – 1 + . . . = ¹-₂.

One way to derive it is to substitute 1 for x in the series

	 1 – x + x2 – x3 + . . . = 1/(1+x)

(Jahnke 2003, 121–22; Sandifer 2007, ch. 31). This derivation has noth-
ing to do with the semantic notions of the numbers involved—it was 
a symbolic derivation, carrying inferences from algebra to arithmetic. 
This kind of reasoning was used for solving geometrical problems 
dealing with lengths and areas, so it was transferred to geometry as 
well, violating the supposed directionality of conceptual metaphors.

This last example is important precisely because of its questionable 
status. There are obviously many similar symbolic derivations that are 
accepted in contemporary terms as well, but this example highlights 
the instability of mathematical truths. Today, the preceding identity 
will be mostly rejected, unless one brings up the notion of Cesàro 
summation (the limit as n goes to infinity of the average of the first n 
partial sums). In that case, the identity is justified because we provide 
it with a semantic content. Does this suggest that we only accept a 
formal inference if it can be grounded from “below” as well?
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Well, this is not just how it works. If we look at Euler’s justification, 
we see that he accepted such maneuvers only if they fit strongly into 
a network of algebraic practices. For example, if the same result could 
be derived by various different means (even if all those means are in-
valid by today’s standards), then Euler would be more likely to accept 
it. Sums of infinite series did not have to relate to quantitative approx-
imations, but to applications of analytic algorithms to analytic ex-
pressions (Ferraro 2007). In the words of Lagrange: “This value [of a 
function] will be truly represented by [its Taylor] series, but the con-
vergence of this series will depend on i [the value of the variable, 
corresponding to x earlier]” (Lagrange 1797, 67). Limit value and ana-
lytic value were not considered to be the same thing, but, according to 
Daniel Bernoulli, “one cannot challenge the exactitude of such a sub-
stitution without overturning the most common principles of analy-
sis” (quoted in Bottazzini 1986, 53).

These techniques did lead to inconsistencies, but these monsters 
could be contained or warded off. It was only later, in the nineteenth 
century, as new techniques entered the field, that inconsistencies be-
came too widespread, and attitudes changed. Transfers of inferences 
(or metaphors) that enjoyed a good fit in the eighteenth century, were 
no longer manageable in the nineteenth. The reaction was to prefer 
the identification of the sum of a series with the limit of its partial 
sums. However, as we saw in chapter 4, formal approaches to power 
series survive to this very day. This is a fine example of negotiating 
the constraints of new standards of rigor and preservation of older 
knowledge.

New ideas and structures often occur in mathematics based on for-
mal analogies rather than grounded metaphors. The subsequent en-
dorsement or rejection of formal analogies depends on their integration 
with other mathematical practices. They must present a good fit with 
existing knowledge, while not violating the constraints on rigor that 
maintain mathematical consensus. When these constraints conflict, 
new reconstructions, superpositions, and deferrals of interpretations 
ensue in order to reduce the tension between competing constraints. 
But this process does not have to be metaphorically grounded in more 
concrete mathematical concepts. It has to work well with the structure 
as a whole.
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Mathematicians do seek intuitions when engaging with new math-
ematics, and these intuitions often have a concrete character, but this 
is not a necessary requisite. For example, the representation of com-
plex numbers as points in the plane helped promote the endorsement 
of complex numbers that evolved from purely formal manipulations 
of roots of negative numbers, first considered as “sophistic” entities 
(see chapter 2). But the integration of complex numbers into mathe-
matics did not depend on their geometric representation; it depended 
on their successful cohabitation with general analysis and algebra.

In fact, formal analogies are not only part of what keeps mathemat-
ics moving; it is also part of the engine steering the theory of mathe-
matical metaphors itself. Indeed, while trying to semantically ground 
mathematical concepts back in embodied experience, Lakoff and Núñez 
depend on syntactic analogies. For instance, the metaphor “a number 
is a collection of objects” is supposed to carry multiplicative associa-
tivity from concrete object collections to abstract arithmetic.

Source inference: 

Pooling A collections of size B and pooling that number of collections of 
size C gives a collection of the same resulting size as pooling the number 
of A collections of the size of the collection formed by pooling B collec-
tions of size C.

Target inference: 

Multiplying A times B and multiplying the result times C gives the same 
number as multiplying A times the result of multiplying B times C. (Lakoff 
and Núñez 2000, 63)

But is the source inference really more concrete? Is it even intelligi-
ble? Since the source inference requires the rather unintuitive practice 
of turning a complicated numbered structure (A collections of size B) 
into tokens that number other collections, it is rather difficult to deci-
pher the experience underlying the “source” inference, and why it 
should feel true. In fact, the easiest way to understand the “source” 
inference is to project the arithmetic target inference onto collections 
of objects.

Similarly, for the unlimited iterability of addition, the origin infer-
ence is: “You can add object collections indefinitely,” and the target in-
ference is “You can add numbers indefinitely” (Lakoff and Núñez 2000, 
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58). But objects of embodied experience are precisely those that can-
not be added indefinitely (you can’t always have another apple—they 
may have run out!). Our sense of an indefinite addition arises, if at all, 
from formal arithmetic experience. It is not grounded in experience, 
but projected on experience.

This most elementary metaphor (arithmetic as dealing with object 
collections), which works great in elementary schools, works pre-
cisely because it is loose (see Presmeg 1992). It becomes rigorous only 
if we project onto our experience with object collections our formal 
experience of numbers, and the supposed grounding is allowed to be-
come circular. Rather than treating embodied experience as an under-
lying generative ground, the theory of mathematical metaphor imposes 
a post hoc mathematized reconstruction of embodied experience.

In fact, the entire theory of mathematical metaphors is a formal 
structure that imposes its neat hierarchies on mathematical practice. 
Indeed, to explain the philosophical formalist approach to mathematics 
on their terms, Lakoff and Núñez reconstruct the following metaphor:

On the right-hand side of table 5.2 are mathematical ideas—that is, 
what the theory of conceptual metaphor deals with. On the left-hand 
side are formal interpretations that Hilbertian formalists (presented in 
the first section of chapter 1) project on mathematical ideas—a reduc-
tion of ideas to combinations of empty signs, which Lakoff and Núñez 
consider inadequate. This table is meant to explain how formalism 
came to be.

But I believe that this table actually serves to explain the problem-
atic origins of the theory of mathematical metaphors. Indeed, some-
thing in the neatness of the correspondence is suspect. If mathematical 
ideas are fundamentally different from their formal counterparts (as 
Lakoff and Núñez claim), then how come the metaphor that translates 
them into systems of empty signs fits so well? Indeed, this metaphor 
fits so well, that some critics failed to distinguish mathematical meta-
phors from formal isomorphisms (Lakoff and Núñez 2001).

Here is one possible explanation for why the preceding metaphor 
works so well: Lakoff and Núñez’s notions of “mathematical ideas” 
and “mathematical metaphor” might themselves depend on an unac-
knowledged metaphor—their own metaphor of metaphor—a metaphor 
reconstructing cognition and its metaphors in the image of none other 
than the structures and isomorphisms of mathematical formalism! They 
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take mathematical practice, and project on it entities and inferences 
that come from the realm of formal structures . . . 

Lakoff and Núñez’s theory manages to account only for a formal/
structural version of mathematics, a mathematics reduced to a hierar-
chical system of structures emerging from axioms (grounding infer-
ences) and partial isomorphisms (metaphors). This reduced version is 
not identical to that of mathematical formalism, but is homologous to 
it (it’s no surprise, then, that cognitive metaphors can be so success-
fully represented as a hierarchical computerized database; see Lakoff 
2008, 36–37). But both the formalist and the cognitivist reductions try 
to impose untenable constraints on mathematics, and are not adequate 
descriptions of mathematical practice.

So How Should We Think about Mathematical Metaphors?

It’s time to put things together, and suggest an alternative to Lakoff 
and Núñez’s definition of mathematical metaphor. The original defini-
tion was: “a grounded, inference-preserving cross-domain mapping—a 

Table 5.2. The Formal Reduction Metaphor

Source Domain Target Domain

Sets and Symbols Mathematical Ideals

A set-theoretical entity (for example, a 
set, a member, a set-theoretical 
structure)

A mathematical concept

An ordered n-tuple An n-place relation among mathematical 
concepts

A set of ordered pairs (suitably 
constrained)

A function or an operator

Constraints on a set-theoretical 
structure

Conceptual axioms: ideas characterizing 
the essence of the subject matter

Inherently meaningless symbol strings 
combined under certain rules

The symbolization of ideas in the 
mathematical subject matter

Inherently meaningless symbol strings 
called “axioms”

The symbolization of the conceptual 
axioms—the ideas characterizing the 
essence of the subject matter

A mapping (called an “interpretation”) 
from the inherently meaningless 
symbol strings to the set-theoretical 
structure

The symbolization relation between 
symbols and the ideas they symbolize

Source: Adapted from Lakoff and Núñez (2000), 371.
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neural mechanism that allows us to use the inferential structure of one 
conceptual domain (say, geometry) to reason about another (say, 
arithmetic)” (Lakoff and Núñez 2000, 6).

So let’s review the definition term by term, and attempt to revise 
it. The first term, “grounded,” refers to embodied experiences with a 
strong tendency to prefer the innate and universal. I suggest a focus 
on embodied experiences more inclined toward contingent practices 
with signs and tools.

Second, metaphors are qualified as “inference preserving.” But as 
we’ll see in the next chapter, inferences are not all that metaphors 
transmit. They transmit entities, inferences, formations of problems, 
means of representation and solution, epistemological status—and this 
list is not meant to be exhaustive. I think that the structuralist term 
“articulation” (Barthes 1971) can more or less cover this field. “Articu-
lation” refers to the relative partition of a phenomenon into elements 
and to the determination of relations between those elements, such as 
difference and repetition or conjunction and exclusion. Articulation 
covers the individuation of entities, their primary logical relations 
(for example, inference), their secondary organization into operational 
units (for example, problems), their relations to external structures (for 
example, representations), and their place within meta structures (for 
example, epistemological relations). So instead of inference preserva-
tion, we should talk about relative articulation.

Third, according to my preceding analysis, domains are not only 
neural units, but interactions of neurons, bodies, signs, and tools, which 
must remain open on several dimensions: open with respect to each 
other (a neural structure interacting with different systems of signs; a 
sign involved in different practices); open with respect to the outside 
(what goes on outside the classroom or mathematical text does inter-
fere with what goes on inside); and open with respect to themselves 
(signs, practices, and neural structures always undergo some slight 
variations in repetition, and it is never absolutely settled when these 
variations escape a given framework). Following Derrida (1988), I will 
use the term “context” for such underdetermined and ambiguously 
bounded domains.

So our definition of metaphor becomes: “relative articulation across 
mathematical contexts—an embodied practice with signs and tools that 
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draws on one context to articulate another.” This is not empty jargon. 
It can be explicated in tables like Lakoff and Núñez’s table 5.1 earlier 
that sought to represent the ideas behind Cartesian geometry. But 
these tables will be messy, complicated, and not very well tabulated. 
If we were to properly account for early modern geometric algebra, 
for instance, these tables would present the complex rearticulation of 
Arabic algebra and Greek geometry in the contexts of Renaissance 
economic and juridical discourses (among others), forming Italian and 
French geometric algebra (see chapter 2 and the first section of chap-
ter 4; Wagner 2010b, 2010c; Cifoletti 1192, 1995). If we settle for Lakoff 
and Núñez’s narrower definition, mathematical metaphor would cover 
only a formal skeleton of algebraized geometry.

Finally, I should emphasize two reservations. First, I don’t consider 
mathematical metaphors to be the only mechanism through which 
mathematics is formed. I think that metaphors are an important part 
of how mathematics evolves, but do not monopolize mathematical 
practice. Second, even in the restricted context of exploring mathe-
matical metaphors, I believe that the proper task of humanist research 
of mathematics is not simply to construct intricate tables of how dif-
ferent mathematical contexts are relatively articulated. I believe that 
our task is to constantly problematize notions of metaphor so as to 
reflect on how and why, in specific historic, social and practical cir-
cumstances, some transfers of knowledge survive the break with their 
contexts, while others end up rejected, marked as invalid and false. 
This should be done by relating metaphors to the wider systems of 
natural, cognitive, social, and other constraints that apply to mathe-
matical practice.

An Alternative Neural Picture

While my arguments may convince some readers that mathematical 
cognition is much more complex than the rigid picture assumed by the 
theory of mathematical metaphors, it is extremely vague from a neuro-
logical point of view. Fortunately, some neuro-cognitivists offer models 
that fit better the complex picture that I try to paint. Here I will follow 
the work of Walter J. Freeman III.
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Here’s how Freeman presents the mainstream neuro-cognitive par-
adigm, which he rejects:

[W]hen sensory input excites receptor neurons, their pulses represent 
primitive elements of sensation, or features. The primary sensory cortex 
combines these representations of features into representations of objects 
and transmits them to adjacent association areas; for example, a combina-
tion of lines and colors might make up a face, a set of phonemes might 
form a sentence, and a sequence of joint angles and tissue pressures might 
represent a gesture. They believe that representations of objects are trans-
mitted from the association cortices to the frontal lobes, where objects are 
abstracted into concepts to which meanings and value are attached. Some-
how, in these chains of reaction, a sensation becomes a perception, but 
they haven’t been able to show where that happens, or in what way a 
perception differs from a sensation, or where the information in a percep-
tion changes into the information in a command for a behavior. (Freeman 
2000, 98)

According to this picture, some stimuli are sensed and coordinated 
into distinct objects (say, numbers) using some system that is in line 
with Dehaene’s or Walsh’s models. Then, these objects may be inter-
related with other objects or experience modules to form more com-
plex models in line with mathematical metaphor theory. Stimulated 
nodes further activate other nodes connected to them via links that 
represent inferences (in the sense of cognitive metaphor theory), and 
we derive conclusions.

In order to explore an alternative, we need to start with Freeman’s 
research on smell in animals. When Freeman tried to figure out what 
happens in animal brains when they sense an odorant, he did find 
certain regularities. But these regularities did not take the form of a 
neuron or a bunch of neurons “lighting up.” The regularities manifested 
in the pattern of activity in a rather large area of the olfactory bulb—
not a small microcircuit.

The activity pattern was expressed by a coordinated activity be-
tween all neurons in the sampled area. EEG recordings revealed a com-
mon wave pattern across the entire area. But the different locations in 
this area, which all presented the same pattern in terms of wave fre-
quencies, differed in the amplitude of the wave (the “strength” of the 
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wave, rather than its shape). So if one mapped the amplitudes across 
the area, one obtained a sort of topographical map of amplitudes (or 
“amplitude modulation”) that served as a footprint for the specific 
odorant.

Now, several points must be emphasized concerning this finding 
(Freeman 2000, ch. 4):

•	 Not just any odorant produced a stable map. In order to get a stable 
amplitude modulation, the animals had to be trained to recognize the 
odorants by assigning them some reinforcement (reward, punishment). 
In other words, the smells had to be made meaningful for the animal.

•	 The activation of the amplitude modulation was not automatic even 
when a smell was meaningful. For example, a hungry cat responded to 
the smell of fish with a clear amplitude modulation, while a recently fed 
cat did not.

•	 The maps were more or less the same between subsequent exposures of 
the same individual to the same odorant in similar conditions, but dif-
fered from the patterns of the same odorant in other individuals.

•	 Once an amplitude modulation was established, the animal was trained 
to recognize other smells. When the original smell was reintroduced, 
the amplitude modulation for the original smell was changed. The in-
termediary experiences of the animal changed its response to an older 
meaningful stimulus.

There are several important consequences to these observations. First, 
the brain response is not determined by the stimulus. The same stim-
ulus yields different amplitude modulations, depending on the context 
and the animal’s history. Second, it is not determined by the sensory 
detectors: the same odorant may be sensed by different detector cells 
and pass through different routes on its way to forming the same mod-
ulation; on the other hand, even if the same sensory cells were in-
volved, context and history could change the eventual result. Third, 
new reinforced stimuli did not just produce new amplitude maps, but 
transformed the maps of old meaningful stimuli as well. Therefore, 
the amplitude modulation is not a “representation” or “encoding” of 
the odorant. Instead, it is a response that integrated the stimulus, its 
meaning for the animal, the context and the animal’s history.
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How can we make sense of these findings in neural terms? Freeman 
suggests that we look at the activity of a brain area as a chaotic dynamic 
system. It has a rest or background state, and several “attractors”—
namely, relatively stable activity patterns (in our case, amplitude 
maps) that the brain dynamics tend to and that the structure of the 
neural network can sustain for a while. When a strong enough stimu-
lus is introduced, it upsets the rest stage, and initiates a process which 
may tend toward one of the attractors or back to the rest state.

When a stimulus is repeatedly associated with a meaningful rein-
forcement (pleasure, aversion), the resulting brain activation reshapes 
the interaction between neurons (“neurons that fire together wire to-
gether”). This changes not just the reaction to a specific stimulus, but 
the underlying neural connections, the dynamics of the network, and 
the totality of its various attractors. As a new attractor forms, old at-
tractors may change.

To explain this in more intuitive terms, think for example of the 
water in a bay. If there’s hardly any wind, the water will be calm. If 
the winds are stronger, certain patterns of currents and waves may 
form. These current and wave patterns are not unique. They depend, 
for example, on the direction of the wind, the season and the currents 
outside the bay. Still, a local fisherman knows the most likely stable 
and enduring patterns (“attractors”) of his bay. Now, a wild storm can 
change the ground topography in such a way that the bay will change 
its shape, give rise to a new pattern of currents and waves, and change 
some features of the old patterns of currents and waves. Changing the 
ground formation in one side of the bay may affect currents and waves 
throughout.

In the context of the brain, the dynamical system involved in odor 
sensation is not isolated, but connected to the rest of the brain. There-
fore, the general state of the brain (sleep, hunger, preparing for a cer-
tain action) serves as an operator that changes the behavior of the 
network, predisposing it in favor or against certain attractors (in terms 
of our last metaphor, one can think of high and low tide as an operator 
affecting the currents and waves in the bay).

A key notion in this context is “preafference”: when an action is 
planned, messages are sent not only to motor systems, but also to 
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sensory systems, to prepare them for the expected results of the ac-
tion. These messages make it more likely that stimuli will drive the 
entire system toward the most relevant attractors or activity patterns. 
According to Freeman,

Preafference provides an order parameter that shapes the attractor land-
scapes, making it easier to capture expected or desired stimuli by enlarg-
ing or deepening the basins of their attractors. . . . The same limbic message 
is sent to all the sensory cortices, so that the choice of a goal orients the 
senses in the same context, whether it is to find food, safety, or the feeling 
of power and comprehension that occurs when dopamine receptors are 
activated. The organism has some idea, whether correct or mistaken, of 
what it is looking for. (Freeman 2000, 108–9)

We can see here a strong phenomenological tendency in Freeman’s 
thinking. Indeed Freeman and his colleague Robert Kozma write: 
“In our view perception begins with intention and not with sensation,” 
and follow with a citation of Merleau-Ponty (response to Cohen Kadosh 
and Walsh 2009, 337). Another philosophical ally that Freeman (2008) 
found is Thomas Aquinas. The Thomist articulation of universal/
singular (or, more generally, intellect/matter) appears to Freeman to 
reflect the distinction between the amplitude modulation and the ma-
terial stimulus, and the Thomist “tending” of the intellect is interpreted 
by Freeman as relating to preafference (but I’m not sure that Freeman’s 
“Godless” reading would be very popular among Thomas experts).

Just as with the transition from Dehaene’s experimental data to 
the theory of mathematical metaphor, the transition from the experi-
mental data concerning sensory cortices to a wider understanding of 
cognition is still exploratory and conjectural. According to Freeman, 
the sensory cortices’ amplitude maps are an “early stage in the con-
struction of meaning . . . by which an animal ‘in-forms’ itself as to 
what to do with or about an odorant, such as whether to eat the food 
or run from the predator giving the odorant information” (Freeman 
2000, 89–90). “Meaning” here is the integration of a stimulus into a 
goal oriented action. The sensory patterns are supposed to integrate 
with other brain patterns to generate ever wider brain dynamics that 
represent more complex meanings. What distinguishes humans in this 
picture is
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the capacity to construct hypothetical meta-operators that combine and 
reshape the ordinary wave packets that we share with other mammals and 
make symbols. These representations are in, on (e.g., tattoos), or outside 
the body, serving social planning and communication. (response to Cohen 
Kadosh and Walsh 2009, 337)

Let’s explore what happens when we try to apply this theory to math-
ematics. First, Freeman rejects both Dehaene’s and Walsh’s attempts 
to locate number or magnitudes in small microsystems. According to 
Freeman, meaningful numbers can only emerge in the dynamics of 
larger brain areas, akin to his amplitude maps. He therefore rejects the 
focus in mainstream research on finding which neurons shoot and 
which stay silent

I propose that every neuron and every patch participates in every experi-
ence and behavior, even if its contribution is to silence its pulse train or 
stay dark in a brain image. What is important is the small fraction of semi-
autonomous activity in every part that is coordinated, not the small frac-
tion of neurons or patches that is more active than the average. (Freeman 
2000, 109–10)

If we’re looking for cognitive categories,

They are to be sought in large-scale neural structure and activity having 
low spatial density and wide correlation length. They are mesoscopic pat-
terns that differ markedly from microscopic sensory and neural activity 
patterns, which are spatially localized at high density in small clusters of 
neurons. Microscopic activity driven by sensory input cannot be part of 
the knowledge base because it is unique and ephemeral; knowledge in the 
form of interrelated categories is enduring yet continually changing over 
the lifespan of the brain and body. (Freeman 2009, 3)

This analysis works well with several points that I made earlier. First, 
a concept is no longer an independent representation (possibly built 
upon an embodied experience, but then objectified and stabilized). It is 
an integration of embodied action with tools and signs, personal and 
cultural history and stimuli. An inference (the formation of a pattern 
in sensory circuits that triggers the formation of a pattern in action 
circuits) is no longer something that just happens because a node is lit, 
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a metaphor is activated, and then another node is lit; instead, it is the 
result of a specific attunement predisposing us toward the inference.

Second, with the notion of preafference, the hierarchical grounding 
is no longer imposed. If an action can shape sensation, and not just the 
other way around, there’s no problem carrying knowledge from more 
abstract activities (for example, algebra) to more concrete experiences 
(for example, embodied handling of object collections).

Third, the relation between mathematical concepts is inherently 
fluid. It is not because domain A is linked to domain B that they relate, 
but because they are both expressions of the dynamics of the same 
underlying neural network. If numbers and geometric magnitudes 
correspond to different modulation patterns in the same network, the 
carpet is pulled from under the domain individuation problem.

Fourth, a certain change in the overall system may change all con-
cepts simultaneously, because a change in the structure of the neural 
network may affects all the attractors in the system at once. A certain 
reorganization of the underlying neural structure will affect, say, ge-
ometry and algebra at once, without waiting for an inference to occur 
in one domain and then move on to the other. Similarly, since different 
stimuli can direct the system toward the same attractor, the same 
meaning (expectations, behaviors) may emerge from different mathe-
matical entities (numbers, points, and so on) without it first being ap-
plied to one, and then transferred to another. Of course, the latter pro-
cess could still take place: a new arithmetical practice in one domain 
(say arithmetic) will reshape the entire neural network, and result in a 
related new geometrical practice.

Finally, an inference (triggering an action pattern by a sensory pat-
tern) no longer has to follow a wiring that prepares for it in advance, 
as in the theory of mathematical metaphor. The metaphor theory as-
sumes that the domains must already be bound or shoot together in 
order to be subsequently wired together by a metaphor that enables 
the inference. In Freeman’s model, an inference (a new pattern that 
follows a certain stimulus) can also emerge accidentally (or, more sci-
entifically, as a result of the chaotic dynamics of the system). The re-
wards or punishments associated with the inference (its adequacy 
with respect to the constraints that govern mathematical practice) will 
then help reinforce or inhibit the new inference or pattern in future 
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instances. This aleatory component of reasoning is a better explana-
tion of creative breakthroughs than the one offered by the theory of 
conceptual metaphor.

The observations in the last few paragraphs do not pretend to serve 
as a model that we can try to test empirically—this is the purview of 
scientists. But I believe that these observations offer a better allegory 
(or metaphor) for mathematical practice than the one derived from 
imposing on mathematical cognition the ordered structure of founda-
tions and isomorphisms as suggested by the cognitive theory of math-
ematical metaphor.

Another Vision of Mathematical Cognition

Since we’ve already started wandering away from the realm of science 
to the realm of allegory, I’m going to take yet another step away from 
science, and suggest a new philosophical story about mathematical 
cognition, which carries the discussion even further away from the 
world of well ordered hierarchies.

But first, a warning of sorts. It should be obvious that I am strongly 
influenced by French post-structuralism. This is very explicit in most 
of my papers, and should be discernible from this book as well. How-
ever, I know that working with thinkers like Derrida or Deleuze alien-
ates many readers, and that post-structuralist jargon is impenetrable 
to the untrained. I decided, for this book, to allow myself only passing 
references to such thinkers, and almost no jargon. This does, however, 
come with a price. While I can present much of my thinking in more 
mainstream language, some of the edge is lost in translation.

The following section, therefore, will be an exception. I will follow 
here closely some ideas of Gilles Deleuze. I will try to remain accessible 
to a wide readership in this section too, but if you’re allergic to think-
ers like Deleuze and the associated style of reasoning, perhaps it’s best 
for you to just skip it. On the other hand, as some mainstream philos-
ophers embedded firmly in the analytic and pragmatic traditions have 
recently been flirting with Hegel, Heidegger, and Levinas, perhaps ne-
gotiating with Deleuze will not come as such a terrible shock.

The book that I follow here is one of Deleuze’s less-known works, 
a rather marginalized interpretation of the work of the painter Francis 
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Bacon, subtitled The Logic of Sensation (2003). I will appropriate and 
decontextualize this book here to suggest a way of thinking about 
reasoning with symbols, or, more specifically, with the diagrams of 
classical Greek geometry.

This interpretation will situate classical geometric practice along a 
continuum ranging from rigorous optico-linguistic codes to materially 
constrained embodied gestures set against a noisy background (for the 
productive relation between reason and noise, see also Michel Serre’s 
[2007] The Parasite). What binds this continuum together is what 
Deleuze calls “haptic vision.”

From Diagrams to Haptic Vision

I will begin with some observations by Reviel Netz concerning Greek 
mathematical practice. Netz originally embedded his deep and in-
sightful analysis in a modular cognitive framework, but I believe it can 
work even better with the very different interpretation I suggest later 
(see Latour’s critique [2008] for an argument explaining the impor-
tance of Netz’s work).

According to Netz, a geometric diagram is “a finite system of rela-
tions. . . . It is limited in space; and it is discrete. Each geometrical 
proposition refers to an infinite continuous set of points. Yet . . . the 
lettering of the diagram . . . turns it into a system of intersections, into 
a finite manageable system” (Netz 1999, 34–35). This finite system, ac-
companied by the highly formulaic and restricted Greek mathematical 
language was “produced from a few simple building blocks, [and al-
lowed] the simplification of the universe.” It thus contributed to mak-
ing the “inspection of the entire universe possible” (Netz 1999, 158, 266).

Netz’s description of the coded world of geometric diagrams may 
recall Paul Sérusier’s presentation of abstract painting as “reducing 
all forms to the smallest number of forms of which we are capable of 
thinking—straight lines, some angles, arcs of the circle” (quoted by 
Deleuze 2003, 92). This is what Deleuze calls “ ‘digital,’ not in direct 
reference to the hand, but in reference to the basic units of a code” 
(Deleuze 2003, 92). But Deleuze explains that even the units of abstract 
painting are “aesthetic and not mathematic, inasmuch as they have 
completely internalized the manual movement that produces them” 
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(Deleuze 2003, 92). I believe, however, that the internalization of man-
ual movement is true for geometric diagrams as well.

To understand this claim, I note a tension between how diagrams 
are drawn in principle and in practice. Netz argues that in proposition 
I.2 of Euclid’s Elements,

when an equilateral triangle is constructed in the course of the proposi-
tion, one is faced with a dilemma. Either one assumes that the two auxil-
iary circles [required for the construction] have been constructed as well—
but how many steps further can this be carried, as one goes on to ever 
more complex constructions? Or, alternatively, one must conclude that the 
so-called equilateral triangle of the diagram is fake. Thus the equilateral 
triangle of Proposition I.2 [ABD in figure 5.2] is a token gesture, a make-
believe. It acknowledges the shadow of a possible construction without 
actually performing it. (Netz 1999, 54)

The geometric diagram therefore includes a double gesture: the “in 
principle” gesture of coded rigorous ruler and compass construction, 
and the practical imprecise drawing. The movement is “digitally” cod-
ified in principle (and, where complex diagrams are concerned, only in 
principle), but “manual” in practice. Note that this tension is reflected 
in contemporary practice by the in-principle-formalizability of math-
ematical arguments, which does not necessarily entail formalization 
in practice.

This manual rendering of diagrams would become even more im-
precise with the means available to the Greeks: sand, ashes, or tablets 
that require advance preparation and so must be used sparingly. Plu
tarch reports that Archimedes even “used to draw the figures on his 
belly with the scraper” when his servants rubbed him down with oil 
(quoted in Unguru and Rowe 1982, 5; this may sound highly fanciful, 
but I’ve witnessed and experienced occurrences not very far removed, 
such as enthusiastic students drawing or writing on their forearms, 
when paper was not readily available). Of course, at some point the 
diagram begins to smudge, and attempts at correction end up making 
an even bigger mess.

In this kind of situation, the following may occur: “one starts with 
a figurative form, a diagram intervenes and scrambles it, and a form of 
completely different nature emerges from the diagram” (Deleuze 2003, 
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125). This latter quotation refers to Francis Bacon’s practice of paint-
ing, but can be appropriated as a description of drawing geometric 
diagrams as well. To do that, we should read Deleuze’s “figurative 
form” as “geometric diagram” and Deleuze’s “diagram” as the messy 
accidents of material drawing: marks and traits “which are irrational, 
involuntary, accidental, free, random. They are nonrepresentative, non
illustrative, nonnarrative. They are no longer either significant or sig-
nifiers: they are a-signifying traits” (Deleuze 2003, 82). We attempt 
to draw a geometric diagram, but the manual movement of drawing 
introduces irrational noise: lines may accidentally superimpose; era-
sure marks may seem like lines; an accidental stroke of the pen sug-
gests a shape that doesn’t belong there; the motion of the belly 
smudges the diagram that Archimedes draws on it with a scraper; a 
soldier suddenly appears and disturbs Archimedes’ circles . . . eventu-

Figure 5.2: Elements, Proposition I.2: “To place at a given point (as an extremity) a 
straight line equal to a given straight line.” All quotations from the Elements follow 
Heath’s translation.
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ally, the diagram must be discarded and redrawn. And redrawn, and 
redrawn, and redrawn.

If we are interested in a neat modular narrative, all this noisy mess 
must be set aside. After we’re done redrawing, we come to the scene 
of writing, where a proof is formally recorded: “the most common 
[practice] was to draw a diagram, to letter it, accompanied by an oral 
dress rehearsal—an internal monologue, perhaps—corresponding to 
the main outline of the argument; and then to proceed to write down 
the proposition as we have it” (Netz 1999, 86).

Within this neat modular description, however, there is a black box. 
This box is the internal monologue, which is a rather vague experi-
ence. To figure out what’s going on in this black box, we can ask, with 
mathematician Jacques Hadamard, the following question: “what in-
ternal or mental images, what kind of ‘internal word’ mathematicians 
make use of; whether they are motor, auditory, visual, or mixed”? Ein-
stein was kind enough to reply:

The psychical entities which seem to serve as elements in thought are 
certain signs and more or less clear images which can be “voluntarily” 
reproduced and combined . . . this combinatory play seems to be the essen-
tial feature in productive thought—before there is any connection with 
logical construction in words or other kinds of signs which can be com-
municated to others. . . . The above mentioned elements are, in my case, of 
visual and some of muscular type. Conventional words or other signs have 
to be sought for laboriously only in a secondary stage, when the men-
tioned associative play is sufficiently established and can be reproduced at 
will. (Hadamard 1973, 147–48)

Note the muscular component of this practice, which Hadamard and 
Einstein were so perceptive as to include. The fact of drawing, with 
one’s arm (using a pen), with one’s entire body (using a stick on sand 
or with a scraper on one’s belly), integrates the body into mathemati-
cal practice. As assumed by the theory of embodied cognition, it is no 
longer an abstract mental act, but a mix of physical simulation and 
action. Into the practice of drawing a geometric diagram irrupt “ex-
pressive movements, paralinguistic signs, breaths and screams [or, to 
be less dramatic, sighs of frustration] and so on” (Deleuze 2003, 93).
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In a paragraph remarkably in line with Freeman’s emphasis on 
the role of context and attunement in cognitive processes, Deleuze 
notes that:

It is a mistake to think that the painter [or the geometer drawing dia-
grams] works on a white surface. . . . If the painter were before a white 
surface, he could reproduce on it an external object functioning as model, 
but such is not the case. The painter has many things in his head, or around 
him, in his studio. Now everything he has around him is already in the 
canvas, more or less virtually, more or less actually, before he begins his 
work. (Deleuze 2003, 71)

So it is not only the material contingencies of drawing that disrupt a 
rational coding of Greek diagrams, but also this background and inter-
nal noise. Even if the disruptive marks do not appear in the drawn 
diagram, they are in the mathematician’s head.

When a geometric diagram is disrupted, it may look as if “a ca-
tastrophe overcame the canvas” (Deleuze 2003, 82; Netz [1999, 15] also 
testifies that his attempts at drawing on sand or ashes were “unmiti-
gated disasters”). This is often a moment of confusion and frustration, 
but also a moment of detachment. Deleuze’s narrative suggests that in 
such moments, where the coded, abstract space is disrupted, the draw-
ing may break away from its confinement to the material surface of 
inscription, and be absorbed into the embodied mind through the hand 
and eye (or the belly, in Archimedes’ case). This happens because a 
gap forms between what the drawing is and what it is supposed to be. 
The hand and eye handle and see one thing, but intend (or experience 
preafference for) something else. The missing object of intention be-
comes ideal—materially absent but still guiding thought (somewhat 
like the analytic a posteriori, or the Black-Scholes vignette). In Free-
man’s terms, we may think of different stimuli (different more or less 
successful diagrams) that trigger the dynamic neural system to con-
verge to the same attractor (stable activity pattern), associated with 
the same implications—a neural manifestation of the ideal intention.

But Deleuze does warn us that if we let “catastrophe” run wild, we 
get no visual space at all. The drawn space would then become a space 
of action painting (for example, Jackson Pollock): a manual and phys-
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ical space relating irrational embodied motions. To put it in neural 
terms: if there’s too much noise, the neural system will not be able to 
form stable attractors.

To avoid this danger, Deleuze explains, the “catastrophe” must not 
be allowed to “eat away at the entire painting; it must remain limited 
in space and time. It must remain operative and controlled.” Some-
thing should “emerge from the catastrophe” (Deleuze 2003, 89). We 
must now explain how the highly regulated visual-textual products 
of Greek geometry can emerge from the noisy disruption of drawing 
diagrams.

If the abstract, coded diagram is broken, but we wish to avoid the 
wild space of action painting, then the noisy “operative set of asigni-
fying and nonrepresentative lines and zones, line-strokes and color-
patches,” has to be “ ‘suggestive’ . . . to introduce ‘possibilities of fact’ ” 
(Deleuze 2003, 82–83). Bacon explains:

the marks are made, and you survey the thing like you would a sort of 
graph. And you see within this graph the possibilities of all types of fact 
being painted. . . . [I]f you think of a portrait, you maybe have to put the 
mouth somewhere, but you suddenly see through the graph that the mouth 
could go right across the face (Deleuze 2003, 160).

In a badly drawn geometric diagram, a crooked circular arc may sug-
gest using a parabola to solve a problem; a line drawn out of place may 
suggest a useful auxiliary construction; a soldier disrupting one’s cir-
cles may suggest integrating him into the diagram as the axis of a 
cone, embedding the diagram in three dimensions to figure things out 
. . . In Freeman’s terms, these accidental interruptions may push the 
network to an unexpected attractor that can suggest a new action, out 
of the ordinary.

So far we gained two things from the “catastrophes” of material 
drawing. First, while seeing and drawing one thing, we can envision 
and hold on to another intention. Second, disruptive noise can some-
times be integrated into a new structure. Since these disruptions are 
not only on the canvas but also “in the head,” they may include other 
forms of reasoning that the mathematician is engaged with, triggering 
metaphorical transfers of knowledge.
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Once something emerges from a disrupted geometric diagram, we 
have before us that which Deleuze calls “Figure”: “a shifting sequence or 
series (and not simply a term in a series); it is each sensation that exists 
at diverse levels, in different orders, or in different domains” (Deleuze 
2003, 33). What are these “levels” in our case? One level consists of 
seeing in a diagram a sequence of previous diagrams that have been 
discarded. Another is seeing in a diagram not what is actually drawn, 
but what we intended to draw. Yet another includes the integration of 
drawing “catastrophes” into new ways of processing the problem.

In neural terms, the first level can be associated with the impact of 
past drawing experiences on the neural network. The second level can 
be related to preafference: directing sensory experience toward what-
ever it is that action prepares us to sense. The third level can be related 
to the formation of new attractors or convergence to unexpected ex-
isting attractors due to noisy stimuli. A noisy diagram may trigger neu-
ral networks to go through a sequence of shifting attractors in brain 
areas that handle sensing (vision) and acting (drawing), turning the 
static image into a multi dimensional and dynamic experience. Given 
this dynamic, the diagram is no longer a static object, but a trigger for 
a dynamic chain of interpretations. Diagrams can then be read as tell-
ing a story or narrating a proof that may later be formalizable in a 
language that can be consensually evaluated.

Deleuze refers to the embodied-cognitive capacity to handle this 
kind of multilevel diagrams by the term “haptic vision. . . . It is as if the 
duality of the tactile and the optical were surpassed” (Deleuze 2003, 
129; “haptic” refers to the sense of touch). Initially, the hand only drew, 
and the eye only observed the result. But the emergent Figure involves 
a manipulation or handling without resorting back to the hand, using 
only the associated enriched mode of vision. Indeed, we see in the di-
agram a sequence of past drawings, intended drawings and possible 
integration of noise into a new drawing—all without any actual manual 
redrawing. We can therefore attribute to the eye some of the former 
powers of the hand, resulting in a haptic enhancement of vision. Some-
thing similar happened when abbacus masters looked at a number and 
saw other possible numbers (chapter 2), and when contemporary 
mathematicians look at an x and see various superposing semantic 
and syntactic interpretations (first section in chapter 4).

www.TechnicalBooksPdf.com



 Mathematics and Cognition  •  171

Haptic Vision in Practice

Let’s try to pour some concrete mathematical content into what I tried 
to subsume under Deleuze’s concept of haptic vision.

First, let’s look at the language of classical Greek texts. These texts 
commonly order readers to “let a circle have been drawn,” or “let the 
point A have been taken” (Netz 1999, 51, 25). In Greek, these are per-
fect imperatives, orders to have already completed an action. To whom 
can such an order be addressed? If we do not dismiss these commands 
as rhetorical curiosities, then they are directed at something that, like 
the hand, has the power to make things happen, but, unlike the hand, 
can also sense them as already-having-happened. Haptic vision has 
that power because it integrates the neural sediments of manual mo-
tion and a history of discarded drawings. I use the term “neural sedi-
ments” rather than “memory,” as it is not about reactivating some-
thing safely stored for opportune retrieval; rather, it is about the way 
past experiences formed and reformed our cognitive infrastructure 
and the stable patterns (attractors) to which this infrastructure can 
give rise. Haptic vision thus has the capacity to have had drawn and 
lettered, to reactivate the past without drawing on a memory—that is, 
to sense in an actual Figure both a newly given present and a com-
pleted past.

At this point, it should no longer be odd that we can “Let the points 
A, etc. be imagined as the points of the angles of the inscribed penta-
gon,” even when this polygon is not actually drawn in the diagram of 
Elements Proposition IV.12 (figure 5.3). The cumulative experiences of 
erasing and redrawing endow haptic vision with preafference, that is 
with the capacity to sense lines and points without actually resorting 
back to the drawing hand.

The same experience enables haptic vision to retrace elements that 
are no longer mentioned in either diagram or text. In one of the cases 
that Netz analyzes (cutting a sphere in a given proportion; Netz 2004, 
54), the readers “imagine a watermark underneath Diocles’ diagram 
[that] has a sphere . . . and two cones,” even though Diocles actually 
discarded the sphere and the cones that had motivated the analysis 
from his diagram and text (figure 5.4). The cones and sphere are part 
of what’s there “in [the geometer’s] head or around him,” as one of the 
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Figure 5.3: Elements, Proposition IV.12: “About a given circle to circumscribe an 
equilateral and equiangular pentagon.”
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Figure 5.4: Archimedes’ diagram (left) presenting the problem of cutting the sphere 
in a given proportion, and Diocles’ diagram (right) that suppresses the circle and 
cones. Based on Netz (2004), 12, 42.

most likely attractors of the cognitive dynamics in the given context, 
or as an operator constraining this dynamic.

This sensing as completed of that which is just now being given, of 
that which is not actually drawn and of that which has been discarded 
is not static. Suppose we are ordered to “Let some point be taken on 
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the circle, A” (Netz 1999, 22), or “Let a chance point be taken on AB” 
(Netz 2004, 77). Here we are ordered to sense a point as general or as 
random. To do that we require more than just an observing eye or a 
drawing hand. We must sense with the given point the possibility of 
alternative points being taken elsewhere. Since haptic vision emerged 
from the random marks and “catastrophes” of discarded diagrams, it 
retains the neural sediments of points marked elsewhere. As the expe-
rience of any such point may direct the brain dynamic to the same 
attractor, each point could be considered as equivalent to the others. 
This neural dynamics may be the material cognitive counterparts of 
the general, random and possible.

Sometimes geometric elements are not only general or random, but 
actually mobile. Fried and Unguru follow Apollonius in stating that a 
“straight line generating [some conic] surface is moved” to generate 
the cone, even though the diagram is still. If indeed the “three dia-
grams given in the body of the proof . . . may be thought of as three 
‘snapshots’ of the generation of the surface just described” (Fried 
and Unguru 2001, 69–70; figure 5.5), it is because the haptic eye that 
watches over them can see, as Deleuze put it, “a shifting sequence 
or series” (Deleuze 2003, 33). The diagrams may be “indistinguishable 

Figure 5.5: Apollonius’s cones. Based on Fried and Unguru (2001).
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except for the labeling,” but “one can see in the proof and in the diagram 
the genesis” of the relevant geometric objects. The diagrams of Apol-
lonius urge us “to imagine a cone being increased from one base to 
another, or, rather, a sequence of cones with ever-increasing bases” 
(Fried and Unguru 2001, 69–70). From the point of view of the haptic 
eye, this wouldn’t be imagining; it would be sensing in the Figure a 
host of past discarded sketches as a shifting sequence of possibilities 
or a series of consecutive brain dynamic attractors, each triggered by 
its predecessor. Haptic vision includes, together with the dimensions 
of present, past, absent, discarded, random, general, and possible also 
a dimension of motion.

Ian Mueller quotes Heath quoting “Simplicius’ report according to 
which the fifth-century sophist Antiphon claimed that a polygon of 
sufficiently many sides inscribed in a circle would exhaust the circle” 
(Mueller 1981, 234). This is precisely the kind of perception that thick-
lined material drawing and its “catastrophes” may conjure. Indeed, a 
circle traced manually by a thick pencil may be indistinguishable from 
a many-sided polygon. The haptic eye unfolds this contradiction into 
a “shifting sequence or series” of possible stages—in our case, a series 
of polygons that serve as improving approximations for the circle. 
This maneuver is integrated into a rigorous form of reasoning in ex-
haustion arguments such as that of Elements XII.2 (figure 5.6), where 

Figure 5.6: Elements, Proposition XII.2: “Circles are to one another as the squares on 
the diameters.”
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Figure 5.7: Elements, Proposition III.10: “A circle does not cut a circle at more points 
than two.”
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one proves a theorem about the ratio of circles by resorting to a se-
quence of polygons that increasingly approximate the circles.

Finally, haptic vision can sense not only the past, general, absent, 
mobile, and sequential, but even the absurd. In Proposition III.10 of the 
Elements (figure 5.7), two circles are drawn intersecting at four points 
in order to prove the absurdity of this situation. The sedimented expe-
rience of “catastrophic,” messy sketches of crooked circles can allow 
haptic vision to hold onto the absurd diagram, and still obtain a rigor-
ous geometric proof. Indeed, haptic vision is used to the gap between 
diagrams and what they purport to draw. Under haptic vision, the dia-
gram is not just what is seen or drawn, but also something that can be 
saved from “catastrophic” drawings to form a reasoned Figure. Under 
specific intentions, Haptic vision senses by means of preafference 
something other than what is present, and breaks down the absurd 
diagram into elements that make sense. 

In order to make rational sense, the Figures that emerge from drawn 
diagrams are stratified into orders of past, present, absence, erasure, 
chance, generality, possibility, motion, and counterfactuality. Haptic 
vision operates not by subjecting Figures to a single abstract code, but 
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by an evolving cognitive dynamic (rather than a fixed cognitive state) 
that articulates and communicates the preceding possibly contradic-
tory orders. Each order may be considered as arising from the same 
stimulus (the diagram) feeding into a given brain area, but under a 
somewhat different global operator (different expectations, states of 
mind, or intentions); alternatively (and probably more in line with Free-
man’s thought) each order may be considered as the result of different 
stimuli feeding into a given brain area under the global operator, or 
symbol, that the diagram presents. It is the haptic eye’s articulation 
and recomposition of orders of sensation into a serial development or 
“movement in all its continuity” that regulates what Deleuze calls the 
“logic of sensation” (Deleuze 2003, 35). This is the logic that turns noise 
into creative input, and binds together conflicting constraints and su-
perposing interpretations into a system of layers that are piecemeal 
formalizable, but not actually subject to any global formalism. This logic 
is what the various case studies and arguments of this book attempt to 
illustrate.

The economy of this haptic vision is complex. We often think of the 
gaze as having power over its object. At the same time, we think of 
the gaze as being captured by objects. Haptic vision introduces a sense 
of balance into this economy. The Figure compels itself on us, but we 
have the power to manipulate it by means of haptic vision. Indeed, the 
haptic gaze invests the Figure with a compelling dynamism. This “logic 
of sensation” is perhaps one way to articulate mathematical truth. 
Truth emerges as a balance between our power to manipulate an ob-
ject while being compelled by its law.

www.TechnicalBooksPdf.com



■ ■ ■ ■ ■ ■ ■ ■

C H A P T E R  6

Mathematical Metaphors Gone Wild

In this chapter, I will reflect on two case studies. The first will con-
sider four medieval and early modern examples of relating algebra to 
geometry. These examples will show that when two mathematical 
domains are linked, what passes between them cannot be reduced to 
“inferences,” as assumed by the theory of mathematical metaphor. The 
second case study will review notions of infinity since early modernity. 
The purpose of the review will be to show that these notions are far too 
variegated and complex to be subsumed under a single metaphor—
namely, Lakoff and Núñez’s basic metaphor of infinity, which tries to 
read all mathematical infinities as metaphorically projecting final des-
tinations on indefinite sequences.

What Passes between Algebra and Geometry

We’ll consider here four historical case studies related to the alge-
braization of geometry. For each of these case studies I will ask, “What 
is it that’s transferred between geometry and algebra?” If in each case 
we have a transfer of entities and inferences from one conceptual do-
main to another, then our findings support the theory of Lakoff and 
Núñez (2000). If, however, we can’t reduce whatever is transferred 
between algebra and geometry to entities and inferences, then mathe-
matical metaphor must be something more complex.

The analysis refers to the specific case studies presented, and does 
not necessarily reflect the overall approach of the relevant mathema-
ticians. I shuffled the chronological order of the examples in favor of 
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the logical buildup of the analysis. Wherever I used anachronistic no-
tations, I tried to use them in a way that won’t tamper with my anal-
ysis here.

Piero della Francesca (Italy, Fifteenth Century) 

The problem: There’s a circle with diameter 12, we want to inscribe 
a[n isosceles] triangle such that one of its sides is 8. I ask for the other 
two sides (della Francesca 1970, 211).

Solution (summary with anachronistic notation): We take the alti-
tude of the triangle as the unknown thing (anachronistically denoted x). 
Since chords of a circle intersect proportionally, and since the altitude 
bisects the base, we have

	 x(12 – x) = (8/2)2.

Rearranging the equation, we get

	 x2 + 16 = 12x.

Solving according to the standard rule, we obtain

	 x = 6 + √•2•0

Figure 6.1: Piero’s diagram.
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According to the Pythagorean theorem, the side of the triangle is

	 √42 + (6 + √20)2 = √72 + √2880.

Analysis: We have here a combination of geometric inferences (circle 
proportion theory, the Pythagorean theorem) and algebraic inferences 
(forming, simplifying, and solving quadratic equations). We also have 
here a nonclassical conflation of lines and numbers, which are treated 
as interchangeable entities, in violation of the standards of classical 
Greek geometry.

We can easily describe this case study in terms of a conceptual 
blend (lines, numbers, and algebraic unknowns are correlated) and a 
conceptual metaphor (algebraic inferences are imported to geometry). 
This fits well with Lakoff and Núñez’s theory of conceptual metaphor. 
Here, algebraic entities and inferences are transferred into geometry. 
Note, however, that the direction of transfer violates the requirement 
of transferring inferences from more concrete domains to more ab-
stract ones . . . 

Omar Khayyam (Central Asia, Eleventh Century)

The problem: A cube equals sides and a number (Wöpcke 1851, 32). 
Anachronistically, this reads: x3 = ax + b.

Solution (summary with some anachronistic notation): Let the line 
AB be the side of a square equal in area to a, the coefficient of the side 
x in the problem (that is, AB = √•a ). Let the line BC be the side of a box 
that is equal in volume to the number in the problem (b), and whose 
base is the square of area a built on AB (that is, BC = b/a). Let DBE be 
a parabola with parameter AB, and ZBE a hyperbola with parameter 
BC. E is their point of intersection, and EH and ET are perpendicular to 
the continuations of CB and AB, respectively.

From the properties of conic sections, it follows (denoting “x to y is 
as z to w” by “x:y :: z:w”)

	 AB:BH :: BH:BT :: BT:CH.

This means that

	 sq(AB):sq(BH ) :: BH:CH.
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By cross multiplication, we have

	 cube(BH ) = box(sq(AB), CH ) = box(sq(AB), BH ) + box(sq(AB), BC ).

Given our choices of AB (√•a ) and BC (b/a), we find that BH is the re-
quired side of the cube (x).

Analysis: The problem is explicitly formulated in terms of the rhe-
torical Arabic Shay-Mal algebra, and is part of a treatise that system-
atically covers a long list of algebraic problems (cubic equations). 
Khayyam’s conception of algebra, however, is as follows: “The art of 
algebra . . . has as its goal to determine unknowns, either numerical or 
geometrical” (Wöpcke 1851, 1). This means that algebra is a language 
that is used to speak about arithmetic and geometry. However, in 
Khayyam’s book, arithmetic interpretations of algebra are limited to 
the simplest equations (for example, 16–18), and are quickly set aside.

When the algebraic problems are interpreted geometrically, the 
reasoning is highly classical, relying strictly on geometric inferences 
(except for the conflation of numbers and lines; see Netz 2004 for an 
analysis). Moreover, in the solutions, division into cases is based on 

Figure 6.2: Khayyam’s diagram.
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geometric, rather than algebraic considerations, and even numerical 
examples undergo a highly geometric analysis.

While we can speak here in terms of an underlying arithmetic-
geometric blend that conflates numbers and lines, we can’t say that 
algebraic inferences are transferred into geometry—all inferences in 
Khayyam’s work are geometric. Nevertheless, the role of algebra here 
is significant. Algebra here is the means to provide a new organization 
of geometric knowledge. The same arguments that served Archimedes 
for the geometric task of slicing a sphere in a given proportion are 
reset in Khayyam’s work inside a system of problems that depends on 
algebraic forms of expression. Algebra furnishes Khayyam with a sys-
tem of problems, rather than inferences or entities. What is transferred 
here from algebra to geometry is an organization of knowledge—not en-
tities, hypotheses, and inferences, but constitutive problems.

René Descartes (France, Seventeenth Century)

The problem: Solve the quartic equation z4 = pz2 + qz (Descartes 1954, 
196).

Figure 6.3: Descartes’s diagram.
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Solution (summary with very little anachronism): Let FAG be a pa-
rabola with parameter 1. Draw along the parabola’s axis AC and CD 
of length 1/2 and p/2, respectively. Then draw a perpendicular DE of 
length q/2. Draw around E a circle of radius AE. Let F be the intersec-
tion of the parabola and the circle, and draw FL, a perpendicular to the 
axis of the parabola. Setting z = FL solves the equation.

Indeed, by the property of the parabola

	 AL = FL2 = z2.

Since F is on the circle,

	 FE2 = AE 2 = (q/2)2 + ((p + 1)/2)2.

Also, according to the Pythagorean theorem,

	 FE 2 = (z – q/2)2 + (z2 – (p + 1)/2)2.

Comparing the two values of FE and simplifying, we obtain that z in-
deed satisfies the original equation.

Analysis: The book’s title, La Géometrie, reflects its motivation. In-
deed, the first two parts of the book deal with algebraically assisted 
solutions of geometric problems from the classical corpus. In that 
sense, the approach is comparable to that of Piero della Francesca 
(though much more sophisticated). But the third part of the book, 
from which the problem is taken, opens with purely algebraic prob-
lems and a purely algebraic analysis: cubic and quartic equations are 
classified and simplified by algebraic means. Much effort is spent on 
transforming irrational coefficients into rational ones and on deriving 
rational solutions—procedures that are clearly not geometric. In fact, it 
is only half way into the third part of the book that a diagram appears.

Moreover, unlike the situation in Khayyam’s case, the analysis of 
the geometric construction (and most likely, the motivation too) is 
mostly algebraic. The details of the solution make it highly plausible 
that it was derived by transforming the original equation to a compar-
ison of completed squares, and then providing a geometric interpreta-
tion (see Bos 2001). Indeed, the parabola-circle intersection is a geo-
metric representation of the algebraically derived equality between 
the two algebraic expressions (z – q/2)2 + (z2 – (p + 1)/2)2 and (q/2)2 + 
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((p + 1)/2)2. The use of a geometric representation to solve an algebraic 
problem is the novelty introduced here by Descartes.

Note, however, that Descartes knew the Italian arithmetic formula 
for solving the preceding equation and quoted it explicitly. What’s the 
point, then, of Descartes’s geometric representation? The answer lies 
in the next pages of Descartes’s book, where equations of degrees 5 
and 6, which are not solvable by algebraic means, are solved by similar 
geometric representations (depending on more advanced curves). The 
geometric representation of algebraic equations therefore serves to 
enhance our ability to solve algebraic problems. Note how radical the 
impact of geometric representation is: equating the two algebraic ex-
pressions for the length of FE counts as the statement of a problem; 
but the equivalent geometric drawing of the intersecting curves counts, 
according to Descartes’s contemporary standards, as the representa-
tion of a solution.

This solution obviously depends on an underlying blend of numbers, 
unknowns, and lines, but it cannot be reduced to a transfer of entities 
or inferences between algebra and geometry. It’s not a geometric in-
ference that helps us solve the algebraic problem, but geometric forms 
of solution representation. The novelty here is a transfer of means of 
representation from geometry to algebra.

Rafael Bombelli (Italy, Sixteenth Century)

In his manuscript book III from the 1550s (Bologna, Biblioteca 
dell’Archiginnasio, B.1569), Bombelli presented a host of recreational/
commercial mathematical problems, and solved them algebraically. In 
Book IV, some of these problems are treated again, this time geomet-
rically. Let’s take a look at one such problem.

The problem: Algebraically, we are concerned with a partnership 
problem (fol. 134r). To put it in slightly anachronistic terms, three part-
ners contribute x, 2x + 4, and x(2x + 4), respectively. Their business 
made 300, and when they divided the profits, the first partner got 20. 

Solution: The statement of the problem yields the relation

	 x : (x + (2x + 4) + x(2x + 4)) :: 20 : 300,
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which by cross multiplication translates into

	 20(2x2 + 7x + 4) = 300x.

In the geometric version (Bombelli 1929, §102), this equality trans-
lates into an equality between the rectangle iot (where io is 20, oq is 
2x2, qs is 7x, and st is 4) and the rectangle yGC (where yG is x and GC 
is 300). Note here that the three parts of the line ot involve different 
powers of x—we will explain how Bombelli handles this issue after we 
describe the steps of the solution.

The first algebraic step is to divide the equation by 20, which yields

	 2x2 + 7x + 4 = 15x.

Figure 6.4: Bombelli’s diagram.
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This step is reflected geometrically by rescaling the two rectangles: the 
top rectangle is rescaled along the vertical dimension according to the 
ratio on:oi (1:20), and the bottom rectangle along the horizontal di-
mension according to the same ratio, this time represented as GH:GI, 
which equals GD:GC.

The next algebraic steps are removing 7x from both sides and divid-
ing by 2 to obtain

	 x2 + 2 = 4x.

Geometrically, this is represented by removing from the top rectan-
gle the rectangle with base qs and from the bottom rectangle the rect-
angle with base ED, and then halving the remaining rectangles along 
the horizontal dimension, yielding an equality between the sum of nop 
and uls on the one hand and yGF on the other. Finally, the algebraic 
equation is solved by the standard formula that yields 2 + √•2, which is 
translated into a geometric construction of the line ψm (we skip the 
details of this last construction).

The crucial point here is that in this diagram, there are three re-
gimes of lines: known, multiples of the unknown x, and multiples of 
squares of the unknown x. Since a priori we do not know the value of 
the unknown, we do not know how to represent such lines as qs and 
st. Nevertheless, Bombelli has to draw them somehow.

To do that, the unknown line d (representing x) is drawn as equal 
to the unit line b (representing 1). This way a line that is a multiple of 
the unknown line (say, qs, representing 7x) is equal in length to the 
coefficient of the unknown (7). So the length of a line in this diagram 
can represent different things depending on whether the line is known 
or unknown: the line’s magnitude or the coefficient of the unknown, 
respectively.

A line here is more than just a representation of its length—it has a 
length and a register (known or unknown). One could perhaps think 
of this situation as a new conceptual blend of algebra and geometry, 
but this would violate Lakoff and Núñez’s requirement of “two distinct 
cognitive structures with fixed correspondences between them.” It is 
precisely because the correspondence here is mixed (one correspon-
dence for the known lines and a different kind of correspondence for 
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unknown lines) that this representation works (note that x is not a 
variable, but an unknown number determined by the problem).

Then there’s the issue of representing the line whose length is 2x2. 
Here Bombelli takes the rectangle formed by the lines representing 2x 
and x, and constructs another rectangle of equal area on the line b of 
length 1. The length of the other side of the new rectangle is used to 
represent 2x2. Now, since the unknown line is represented by a line of 
length 1, the line representing 2x2 is actually of length 2. A careful 
reading of Bombelli’s language shows that the lines representing the 
square of the unknown often have an extra implicit dimension (the 
other side of the rectangle used to construct them), so these lines are 
sometimes understood as rectangles whose other side, of length 1, be-
longs to a third implicit dimension.

Analysis: We see here a rather intricate form of representation, 
which requires several levels of correspondence. Each line is read ac-
cording to its length and according to its register (known, unknown, or 
square), and the diagram is sometimes understood as two dimensional 
and sometimes as having a third implicit dimension. This blend of al-
gebra and geometry is not an instance of Lakoff and Núñez’s “fixed 
correspondence.” Mixed correspondences in diagrams are not strictly 
an early modern phenomenon (see, for example, the analysis of mod-
ern Dynkin diagrams by Lefebvre 2002). Such phenomena are better 
understood by the notion of superposing interpretations or the multi-
dimensional vision of Deleuze’s haptic eye.

But we still haven’t answered the question of what exactly is trans-
ferred here from one conceptual domain to the other. We might say 
that, as with Descartes (and anticipating some of his techniques), we 
import a geometric form of representing solutions into algebra. But in 
the case of Descartes, this transfer of means of representation enabled 
solving equations that could not be solved otherwise, whereas here, 
and throughout Bombelli’s work, no such thing occurs. Bombelli’s geo-
metric representations are complicated and creative means of retrac-
ing algebraic calculations step-by-step with lines rather than algebraic 
and arithmetic signs.

Bombelli’s motivation for his apparently useless representation can 
be recovered from the following quotation:
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I had in mind to verify with geometrical demonstrations the working out 
of all these Arithmetical problems, knowing that these two sciences (that 
is, Arithmetic and Geometry) have between them such accord that the 
former is the verification [prova] of the latter and the latter is the demon-
stration [dimostration] of the former. (Bombelli 1966, 476)

What is transferred here between geometry and algebra is not just 
means of representation, organization of knowledge, entities, or infer-
ences. What is transferred here from geometry to algebra is epistemo-
logical status. It is because these two domains can be made equivalent 
(by a nonfixed, multilayered correspondence), that the young science 
of algebra becomes epistemologically more robust. The purpose is to 
provide a mechanism of geometric formalization, which would help 
algebra meet Bombelli’s contemporary validity constraints. This is 
a practice of providing relevant interpretations in order to establish 
mathematical truths.

Conclusion

The preceding analysis demonstrates two facts. First, it’s not only 
entities and inferences that are transferred between mathematical 
domains. The transfer of organization of knowledge, means of repre-
sentation, and epistemological status is crucial for mathematics, and 
the reader is invited to think of other cognitive elements transferred 
between mathematical domains.

Such transfers are not special to the preceding examples, and take 
place in contemporary mathematics as well. Reframing mathematical 
structures under new schemes (say, the theory of functions under func-
tional analysis) brings about new systems of problems, even if they 
may then be solved by classical means; transferring means of repre-
sentation (for example, reinterpreting a differential equation in a richer 
setting that allows for “weak” or “generalized” solutions, or solving 
problems “in high probability” by random constructions) brings new 
representations of solutions; and the epistemological status of math-
ematical structures can be validated by importing models and tech-
niques from “foreign” domains (for example, model-based consistency 
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proofs and nonconstructive topological or set theoretic existence 
proofs).

Second, the transfer of knowledge between domains may be about 
mixed, rather than fixed, correspondences that consider mathematical 
signs in several ways at the same time, possibly involving underlying 
interpretive contradictions (the same line simultaneously representing 
different magnitudes in the same diagram). This layering is in line with 
a practice of seeing various dimensions or layers in a single diagram, 
or the notion of the haptic eye.

This practice is, again, not an isolated occurrence. It relates to si-
multaneously representing (as discussed in the section on interpreta-
tion in chapter 3) a matrix as an operator (rotation) and operand 
(square), or other positions in an open ended functional hierarchy. 
It relates to the superposition of interpretations in chapters 2 and 4 
as well.

The conclusion is that in thinking about mathematical transfer of 
knowledge between domains, we should renounce two reductions: 
first, the reduction of mathematics to entities and inferences, and sec-
ond, the reduction of mathematical formal consistency (the fact that, 
when properly disambiguated and contextualized, no two mathemati-
cal statements contradict each other) to unique and consistent under-
lying metaphorical (or cognitive) structures.

A Garden of Infinities

In the previous chapter, I tried to argue for a view of mathematical 
metaphors as a dynamic process involving interrelations between 
vaguely delimited domains. Here, I am going to demonstrate this point 
by exploring concepts of infinity. The rich historical variety of infini-
ties will be contrasted with an attempt to ground all mathematical 
conceptions of infinity in a single cognitive metaphor, Lakoff and 
Núñez’s so-called basic metaphor of infinity, or BMI (2000, 161).

The BMI consists of two steps: first one conceives of continuous 
processes as iterative processes (that is, breaking them into reiterated 
minimal steps), and then one projects the existence of a unique final 
state from the domain of completed iterative processes to that of in-
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definitely iterated processes. The result of these metaphors are notions 
of limit (projecting a “final object” on an infinite process) and com-
plete infinity (projecting a “final magnitude” on the infinite sequence 
of unboundedly increasing or decreasing magnitudes).

For Lakoff and Núñez, BMI is the “single general cognitive mecha-
nism underlying all human conceptualization of infinity in mathemat-
ics” (2000, 170). I will show that this claim fails both in the context of 
limits and in the context of complete infinities.

Limits

According to the BMI framework, limits of functions are conceived as 
limits of sequences extracted from these functions. In other words, the 
limit of the function f (x) as x approaches a is conceived as the limit of 
the sequence f (xn) as xn approaches a. This is the first step of the BMI, 
which reads continuous processes as iterative ones.

Historically, however, this wasn’t the case. Indeed, the first canoni-
cal instances of limits in early modern European mathematics came 
from continuous physical processes, and did not depend on discrete 
reductions. In early calculus, notions corresponding to limits were 
mostly related to physical motion, with little or no reference to limits 
of sequences.

But even more importantly, these notions of limit did not neces
sarily depend on bringing an indefinite process to completion. When 
thinking with Newton about moving bodies across a finite span of 
time and space, one considers their velocities. Velocity can be viewed 
as an average velocity across an interval (space traversed divided by 
time spent) or as a momentary velocity: the velocity that the body 
would have, if it continued to move without change (this is indeed 
William Heytesbury’s fourteenth-century definition; see Clagett 1961, 
236). For Newton, as a body reaches the limit (namely, end) of its finite 
motion, its velocity reaches the limit of the finite and continuous span 
of values through which the body’s velocity has gone. This is what 
Newton speaks of when he discusses “last velocities”: “by last velocity 
I understand that with which the body is moved neither before it ar-
rives at the last position and its motion ceases, nor thereafter, but just 
when it arrives” (Ewald 1996, I, 60).
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So what is it that’s infinite about this limit? I quote Newton’s expla-
nation (the evanescent quantities referred to here are the evanescent 
time and space whose ratio may be used to define momentary velocity):

It may also be maintained that if the last ratios of evanescent quantities 
[the last velocity] are given, their last magnitudes [those of the evanescent 
time and space themselves] will also be given; hence all quantities will 
consist of indivisibilia. . . . But this objection rests on a false hypothesis. 
Those last ratios with which quantities vanish are not truly the ratios of 
last quantities, but limits towards which the ratios of quantities decreasing 
without limit always approach; and to which they approach nearer than 
by any given difference, but never exceed, nor attain until the quantities 
diminish in infinitum. (Ewald 1996, I, 60)

The limit here is that of a continuous and finite process and of finite 
velocities bounded away from zero. The evanescent quantities (dimin-
ishing spans of time and space toward the end of motion) indeed de-
crease without end—that is indefinitely, with no final state, “without 
limit.” Indeed, their disappearance at zero is not considered a finite 
state, as zero is viewed as absence, rather than an existential state 
(similarly to the sequence of increasing integers having no final state). 
But the ratios, whose limit is what Newton is after, span a finite and 
continuous range of values. The limit is simply the end of this range.

The operative metaphor here carries the notion of an end, edge, or 
limit from the domain of geometric magnitudes to that of ratios such 
as velocity. Newton indeed states: “And since these limits [of veloci-
ties] are certain and definite, to determine them is a purely geometri-
cal problem” (Ewald 1996, I, 60). This geometric metaphor was well 
entrenched in the relevant intellectual culture. Book V of Euclid’s Ele-
ments, which deals abstractly with ratios of any magnitudes, always 
draws magnitudes as lines. If we think of velocity as a finite magni-
tude contained in a finite interval, there’s no problem thinking about 
the limit of the velocity (in the sense of the edge or end of the interval 
of velocities) of a body reaching the end of its finite and continuous 
motion.

Newton’s underlying metaphor here is: ratios are magnitudes, and 
finitely bounded magnitudes, just like line segments, have ends or lim-
its. The problem arises if we object that velocity, being a ratio, is not 
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itself a magnitude. This was indeed Berkeley’s objection to Newton. 
He claimed that while intervals and surfaces have limits (namely, their 
ends and edges), talking about the limit of velocities makes no sense: 
“A point may be the limit of a line: A line may be the limit of a surface: 
A moment may terminate time. But how can we conceive a velocity 
by the help of such limits?” (Ewald 1996, I, 78). Berkeley calls the geo-
metric limit metaphor, and rejects it. According to Berkeley, ratios are 
not “limitable” geometric magnitudes.

It’s important to emphasize that I endorse the claim that Newton 
did employ some BMI-like constructions (for example, his notion of 
“moment”). But I argue that Newton’s concept of limit is not reducible 
to BMI, and involves other metaphors as well.

But BMI and “ratios are geometric magnitudes with ends” are not 
the only metaphors involved in the notion of limit. Other spatial met-
aphors operate, for example, in the notion of accumulation points of 
a given set of points. Accumulation points can be thought of as the 
limits of all convergent sequences that can be extracted from a given 
set (excluding sequences with constant tails), but this view, much like 
thinking of function limits as derived from sequence limits, misses 
an important mathematical metaphor. Accumulation points can also 
be thought of as points that cannot be spatially separated from the 
given set.

Now, even this revised formulation can still be interpreted as an 
application of BMI: we could be thinking in terms of a sequence of 
ever smaller intervals around the accumulation point that fail to sepa-
rate it from the points of the given set. But we can also think in terms 
of taking a single generic interval around the accumulation point, and 
showing that it necessarily contains points of the given set. These two 
maneuvers are, of course, mathematically equivalent; but metaphori-
cally they are distinct.

To make things concrete, think of the accumulation point 0 with 
respect to the given set A = {1/n : n is a positive integer}. Working with 
BMI, we would say that as we take intervals of decreasing radii (–1,1), 
(–1/2,1/2), (–1/3,1/3), and so on, around zero, we will find inside these 
intervals, respectively, the points 1/2, 1/3, 1/4, and so on, of the given 
set A. Therefore, 0 cannot be separated from the set A, and at the im-
puted “end” of the process, the intervals will shrink to the accumulation 
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point 0. But we may also discard the process interpretation, and say 
that between 0 and a generic barrier ε > 0 lies the point 1/(|¹-ε| + 1) that 
belongs to A.

These mathematically equivalent statements represent two differ-
ent metaphors: the first is BMI, but the second thinks of accumulation 
points as points that cannot be spatially separated by a barrier from a 
spatially deployed set. There is no process here; the metaphor stands 
perfectly still. Sequentializing this process imposes upon it a metaphor 
that is not always relevant, and covers over static and geometric inter-
pretations of some limit related concepts.

Different metaphors of limit do not end there. When it comes to 
infinite sums (series) of functions, a BMI-compatible reconstruction 
of a series as a sequence of partial sums is not the only available path, 
and for many mathematicians in the eighteenth century not even the 
dominant one. First, in some cases, the discrete variable of the sum 
was read as continuous, reversing the steps postulated by BMI. More-
over, the term “convergent series” was sometimes used to refer to se-
ries with diminishing terms, rather than to series whose sequence of 
partial sums has a limit. One even spoke of series that are convergent 
up to a point, and then diverge, as in the case of asymptotic series.

While the sum of a series (the limit of its partial sums) was indeed 
an important notion, the value of a series (as Euler called it in a letter 
to Goldbach; see Jahnke 2003, 122), that is, the value of a function from 
which the series can be derived according to some algorithm, also 
played a major role. The series 1 – x + x2 – x3 + …, for example, was 
an expansion of 1/(1 + x). Therefore, the value of 1 – 1 + 1 – 1 + …, 
obtained from substituting 1 for x in the preceding function, was 1/2.

Today, following Cesàro (building on an interpretation suggested 
by Leibniz), we may think of this limit as the limit of the averages of 
increasingly many partial sums—a conception that does fit BMI. But 
as we mentioned in the previous chapter, it was a different, algebraic 
way of thinking that dominated at the time. The value of the infinite 
series depended on algebraic manipulations, and was not reducible to 
the limit value approached by partial sums.

Finally, one more metaphor, this time from higher modern math
ematics. The sequential process envisaged by BMI also fails when 
considering the limit of a sequence with respect to an “ultrafilter.” An 
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ultrafilter on the positive integers is a set of subsets of the positive 
integers with the following properties:

•	 The empty set is not a member of the ultrafilter.
•	 If a set belongs to the ultrafilter, then so does any set that contains it.
•	 The intersection of two sets that belong to the ultrafilter also belongs to 

the ultrafilter.
•	 For any set of integers, either it or its complement belong to the 

ultrafilter.

Ultrafilters are a difficult notion to swallow. The trivial examples of 
ultrafilters are those that consist of all sets of integers that contain 
some fixed number n (the preceding properties are trivially verified). 
The existence of nontrivial ultrafilters is independent of the ZF axiom 
system, and follows from the axiom of choice.

Now the definition of a limit with respect to an ultrafilter and the 
standard Weierstrassian definition can be subsumed under the follow-
ing template: L is the limit of a sequence {xn} if for every positive ε, the 
members of some “large” subsequence {xnk

} are all within distance ε of 
L. In the Weierstrassian definition, a “large” subsequence is some tail 
of the original sequence (a set of the form {n ∈ N|n > n0}). In the ultra-
filter-based definition, a “large” subsequence is a subsequence whose 
set of indices belongs to the ultrafilter.

A limit with respect to an ultrafilter no longer depends on a BMI-
like step-by-step process, because unlike the tails of the integers, the 
sets that belong an ultrafilter are not linearly ordered, and the limit of 
a sequence does not represent its “end” state, but rather the value best 
approximating the “bulk” of the sequence in some sense.

One could say that the ultrafilter limit takes subsequences that are 
considered “important” in some sense (their sets of indices belong to 
the ultrafilter), and then progressively extracts important subsequences, 
in line with a BMI limit, so as to obtain improving approximations 
of a fixed limit value. But this approach has little to do with the way 
the notion of limit with respect to an ultrafilter is motivated and used 
in actual practice, which usually carries a more logical or abstract-
algebraic flavor.

The point is that while we can, with some effort, reinterpret many 
limit notions in terms of BMI, it can’t be assumed to be their underlying 
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generative mechanism. While we can work with reconstructed BMI 
interpretations, we also actually work with other superimposed and 
deferred interpretations. Trying to reduce all of them to BMI does not 
reflect mathematical practice any better than expressing them in some 
fixed formalist framework.

Infinitesimals and Actual Infinities

Given the plurality of metaphors that play a part in the notion of limit, 
it’s no surprise to find that BMI provides only a very partial account 
of actual infinities and infinitesimals.

Lakoff and Núñez propose two applications of BMI to represent 
what they consider the Euclidean and modern approaches to infini-
tesimals. In the Euclidean application, a point is an indivisible disk 
(the “final” disk in a sequence of disks with vanishing diameters). In the 
modern application, we obtain a disk with infinitesimal diameter (the 
“final” disk in a sequence of disks with positive decreasing diameters). 
Either way, BMI is involved, but it applies to different articulation of 
the generative sequential processes. But, I argue, these applications of 
BMI are far from exhaustive with respect to notions of infinitesimals 
and indivisibles.

Seventeenth-century mathematicians indeed debated whether the 
indivisible elements that lie on a surface are Euclidean lines, or rect-
angles with null width (which, according to the preceding BMI re
construction, should have been identical to the former, since BMI re-
constructs Euclidean points as disks with zero diameter), or rectangles 
with nonzero width smaller than any finite magnitude. But they also 
argued whether and how surfaces were generated from indivisibles. 
Indivisibles were alternatively conceived as fixed components whose 
union exhausted surfaces, as stationary elements that do not exhaust 
surfaces unless they are slightly extended, and as dynamic elements 
that exist as moving through the surface that they generate. The first 
and second of these may be consistent with an underlying BMI, but 
not the last one (associated with, say, Cavalieri; see Stedall 2008, 63–
65). The notion of indivisible turns out to be underdetermined and 
relating to a large variety of different irreconcilable approaches (Boyer 
1959, ch. 4).
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This diversity is further demonstrated by the multiple non-Archi-
median models (models that allow infinitesimal quantities). Lakoff and 
Núñez account for two of them: Robinson’s nonstandard model (ap-
plying the BMI to shrinking intervals of numbers while forcing the 
resulting entities to obey the real numbers axioms, generating a field 
of hyper-real numbers that include infinitesimals) and the “granular” 
numbers that they prefer (applying the BMI to numbers to obtain a 
first order of infinitesimals, and then allowing subsequent higher or-
ders of smaller infinitesimals, but without respecting all the axioms 
of the real numbers).

Lakoff and Núñez consider the latter model (which is their own ad 
hoc invention) more natural, but, as their measure of naturalness is 
BMI, rather than actual practice, they ignore its many practical prob-
lems. For example, in this model, an infinitesimal of the first order can 
be squared, but would not have a square root. This would make a mess 
of real polynomial algebra, and be fatal to the mathematical treatment 
of, among other things, Brownian motion.

Regardless of the respective advantages and drawbacks of the two 
preceding models, the plethora of non-Archimedean approaches sur-
veyed by Ehrlich (2006) shows that the two options leave out many 
accounts. I’d like to highlight here the model consisting of “horn an-
gles”: angles between a circle and a tangent, as considered in Euclid’s 
Elements III.16. These angles form a model of infinitesimal angles (and 
are indeed recognized by Euclid as smaller than any rectilinear angle) 
without depending on BMI for their construction.

There are also conceptions of infinitesimals that build on algebraic 
metaphors. For example, around the turn of the nineteenth century, 
French mathematician Carnot considered infinitesimals as variables:

the quantities called Infinitely small in Mathematics are never quantities 
actually nothing, nor even quantities actually less than such or such de-
terminate magnitudes; but merely quantities which the conditions of the 
proposed question, and the hypotheses on which the calculation is estab-
lished, allow to remain variable until the operation is completed. (Carnot 
1832, 19)

These variable quantities are involved in “imperfect equations,” namely, 
equations involving a variable that require another infinitesimal (an-
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other variable) in order to balance. For example, equating a small se-
cant to a tangent of a given curve at a given point is only possible if 
one allows the addition of a variable quantity that would account for 
the gap between the secant and the tangent. These imperfect equations 
allow mathematicians to replace curve segments by line segments and 
surface elements by rectilinear shapes in calculations. Carnot argues 
that if one takes a legitimately derived imperfect equation, and drops 
the variable part, one gets a correct equation in the standard sense.

But here is the catch: Carnot’s metaphor is not that of discarding 
small or evanescent elements, but that of discarding the imaginary part 
from a complex equation (that is, if a + bi = c + di, then one may legit-
imately discard the imaginary parts to obtain a = c):

If I ask you what is the meaning of an equation in which imaginary quan-
tities enter . . . you answer, that this equation can only assist in discover-
ing the true value of the unknown quantity, when by any transformations 
whatever we have effected the elimination of the imaginary quantities. I 
make the same reply for my valueless quantities [variable infinitesimals]: 
I employ them only as auxiliaries: I allow that my calculation is not rigor-
ously exact, until I have eliminated all: until that time it is not complete, 
and does not admit of application. (Carnot 1832, 35)

Carnot’s infinitesimals, constructed via an algebraic metaphor that 
has nothing to do with BMI, involve “valueless” quantities rather than 
evanescent ones. 

Another algebraic approach is presented by Euler. For Euler, infini-
tesimals were algebraic zeros (Euler 2000 [1755], 51). As a result, a fi-
nite quantity plus an infinitesimal was equal to the original finite 
quantity. But since the ratio between zeros equals any other finite ratio 
(according to the rule of cross multiplication—for example, 0:0 = 1:2 
because 0·2 = 1·0), different zeros can have different ratios to each other.

Here the trick is to go from thinking about zero as a single entity to 
thinking about it as a genus of multiple species. Euler’s lead allows 
us, in turn, to think of infinity not only in terms of BMI, but also as an 
arithmetic 1/0. If we have a notion of “relative nothing,” it is easy to 
construct a formally symmetric notion of “relative everything,” namely, 
an algebraic notion of infinity that allows to consider different orders 
of infinity.
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Thinking of orders of infinity, there is yet another notion of infinity 
that is not reducible to BMI: uncountable, strongly inaccessible cardi-
nals. To explain this term somewhat loosely, suppose you have a no-
tion of an infinite cardinality (say, the least infinite cardinal 0א). Con-
sider all subsequent orders of infinity that can be constructed using 
any operations with this already existing order of infinity. For exam-
ple, taking a power set allows us to construct from 0א the cardinality א, 
the continuum. Strongly inaccessible cardinals are defined in such a 
way that they cannot be constructed from smaller cardinals, namely, 
they cannot be approached by any infinite process constructable from 
 In a way, they are conceived, precisely, as that which cannot be .0א
conceived through BMI! Note that every inaccessible cardinal is also 
a limit cardinal—I will not define this term here, only note that it is 
amenable to some BMI account. However, inaccessible cardinals are 
conceived and defined not as entities that are the final state of some 
indefinite process, but as entities that are beyond any final state of any 
indefinite process. So BMI can be projected on inaccessible cardinal 
post-hoc, but this has nothing to do with their cognitive origin.

But BMI is not only underdetermined and insufficient, it also fails 
to live up to what Lakoff and Núñez consider as the definitive feature 
of mathematical metaphors: it fails to obtain best fit with the relevant 
inferential structure. Indeed, BMI is supposed to carry as many infer-
ences as possible from iterative finite processes to indefinite ones (for 
example, the existence of a final state). But iterative finite processes not 
only have a unique final state that is to be imposed on indefinite pro-
cesses; iterative finite processes also have a unique penultimate state—
something that most concepts of infinity do not have. How come the 
penultimate state is not carried over by the metaphor?

Indeed, it could be. Our basic notion of infinity could have been the 
ordered structure 1,2,3, . . . ,n, . . . ,n′, . . . ,3′,2′,1′, where the primed inte-
gers are ordered inversely to nonprimed ones, and all primed integers 
come after all nonprimed ones. Indeed, there we’d have a final state 
1′, a penultimate state 2′, and so on, improving the fit with finite in-
tuitions. Nevertheless, this model, despite its improved fit, is not very 
popular (it can be historically related to Fontenelle’s 1727 highly crit-
icized attempts and to the contemporary computational model of 
Sergeyev 2013, which has not (yet?) gained wide support). This shows 

www.TechnicalBooksPdf.com



198  •  Chapter 6

that maximal preservation of inferential structure cannot be an ade-
quate description of what mathematical metaphors do in general, or 
BMI in particular. Mathematical metaphors are subject to other con-
straints that support the endorsement of other structures (such as 
simplicity).

So we see that BMI does not cover all notions of infinity and is se-
lective in the way it transfers inferential structure. To make one final 
point, let’s consider yet another example. Lakoff and Núñez explain the 
projective points at infinity (the ideal intersections of parallel lines in 
projective geometry) by means of the increasingly receding intersec-
tion point of almost parallel lines, in line with BMI. Henderson (2002) 
observes that this explanation should yield two intersection points at 
infinity for any pair of parallel lines—one point in each direction.

So BMI cannot be the origin of the single projective point at infinity. 
Indeed, the origin of this point at infinity is easy to track down: it comes 
from the vanishing point in Renaissance art and draftsmanship—a 
practical technique, rather than an inference carried between mathe-
matical domains. Here, the relevant constraint is the alliance of math-
ematics with other vocations.

There are no monopolistic explanations of all notions of infinity and 
limit. We might be able to rearrange many concepts in terms of our 
preferred Ur-concept, but doing that would be a normative project (and 
a problematic one at that) rather than a descriptive tool of mathematical 
cognition theory. This applies to most mathematical concepts. Mathe-
matical concepts survive and evolve due to the interaction of various 
metaphors, practices, signs, and tools subjected to an intricate system 
of constraints. It cannot be captured by monopolistic reductions.

The fact that formal logical presentations of mathematical knowl-
edge can reduce concepts to a rigorous linear chain going from foun-
dations to higher constructs does not imply the alleged conclusion that 
mathematical thought depends on such a linear chain. In fact, mathe-
matical thought depends on a not always coherent superposition of 
practices and constraints. The challenge of the modern mathematician 
is to combine the different dimensions and relations of her or his ideas 
into piecemeal formalizable definitions and proofs. But these proofs 
and definitions are an end result, not a description of mathematical 
cognition.
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C H A P T E R  7

Making a World, Mathematically

To conclude this book, I want to bring up an aspect of mathematical 
practice that was not salient enough in the narratives that I’ve put 
together so far. So far, I have been describing mathematics as respond-
ing to constraints (natural, social, practical, cognitive . . . ). What’s 
missing is how mathematics changes the reality in which it evolves, 
feeding back into the constraints that shape it.

To do that, I am going to follow a path that might cause some rais-
ing of eyebrows: I will follow three nineteenth-century post-Kantian 
German thinkers: Fichte, Schelling, and Hermann Cohen. This may 
seem odd, because their German idealism and neo-Kantianism are usu-
ally seen today as obscure oddities, which may be relevant for histori-
ans of philosophy, but not for contemporary philosophizing as such.

There are some good reasons for this evaluation. Nineteenth-
century German philosophy is at odds with some of the discursive 
and logical standards of contemporary mainstream philosophy, and 
its cultural-intellectual context is so foreign, that readers have to im-
merse themselves in reading for quite a while before it starts making 
sense. The problem is further exacerbated when idealism is presented 
as claiming that reality is nothing but a product of our minds and that 
empirical experience is therefore an illusion (reflected by the famous 
anecdote about Samuel Johnson’s “refutation” of Berkeley’s idealism 
by kicking a stone). This straw-man account reduces idealism to arbi-
trary conceptual accounts imposed on reality.

But the task of post-Kantians thinkers was much more challenging. 
Since they took empirical science very seriously, they sought to recon-
struct the kind of conceptual account that they considered necessary 
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to explain how human thinking could match empirical experience, 
while still retaining the relative autonomy of reason. They were after 
the conceptual structure without which, they believed, our experience 
would fall apart into incoherent strata of sensation and thought. Given 
my apprehension that contemporary philosophy of mathematics is 
stuck in a rut of realism-nominalism debates that are no longer very 
productive, it might be useful to pick up on those abandoned threads 
of thought and see where they might lead. The revived interest of an-
alytic philosophers in Kant and Hegel (via the Pittsburgh school) indi-
cates that my attempt here is not entirely out of touch with contempo-
rary strands.

When I suggest to pick up those threads of thought, I don’t do so 
because I believe that they provide answers or clean up our concepts 
(frankly, I don’t think that answers or clean concepts are philosophy’s 
most important products). I suggest picking up those threads, because 
I see philosophy as a discourse that’s meant to nudge our thinking out 
of stagnation. Philosophy needn’t necessarily be about telling the truth; 
rather, it should be about suggesting new roads of thought, where 
current ones have been worn out and keep leading us in circles or into 
dead ends. Picking up some old abandoned strands of thought is not 
about reviving or vindicating them. It is about appropriating them to 
provide inspiration for new and relevant ways of thinking.

In my particular case, looking into nineteenth-century post-Kantian 
thought led me to rethink the problem of the seemingly miraculous 
success of mathematics in describing natural phenomena (Wigner 
1960), and to suggest a response to Mark Steiner’s (1998) articulation 
of this problem: how is it that analogies based on intra-mathematical 
motivations end up producing mathematical structures, which fit phys-
ical phenomena that had nothing to do with these structures’ original 
context of discovery? The approach I suggest does not follow or apply 
nineteenth-century post-Kantianism as such; still, it is definitely in-
spired by it. But let us set this aside until the last section of this 
chapter.

Since my purpose is not to reconstruct historically the ideas of the 
thinkers that I’m going to review, I allowed myself to offer very brief 
narratives based on specific relevant interpretations, rather than be 
faithful to the thinkers’ own context and motivations. In the case of 
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Fichte, I follow Wood (2012) and Breazeale (n.d.). For Schelling, I com-
plement Breazeale’s account, which focuses on Schelling’s philosophy 
of identity, by Gare (2011), which focuses on his philosophy of nature. 
As for Hermann Cohen, I follow his Das Prinzip der Infinitesimal-
Methode (1883). Marc de Launay’s introduction to his French trans
lation of Cohen’s work (1999) and Scott Edgar’s (2014) paper provide 
useful interpretations.

Fichte

Our starting point for this narrative is Kant’s understanding of geo-
metric practice. A simplified narrative of this practice is as follows. 
First, one constructs a geometric form according to certain rules in 
pure intuition. This means that whatever is constructed is presented 
not on paper or in symbols, but inside our nonempirical, pure form of 
space—that is, the structure of experience that we impose on empirical 
spatial observation. This pure intuition, as Kant understands it, con-
structs objects out of strictly spatial magnitudes and relations. Once 
we have constructed such objects, we can study the features that nec-
essarily follow the construction. The main point is that this practice 
is not just about dealing with concepts; it is about active construction 
and a way of seeing.

For Kant, the structure of a priori spatial intuition, derived as a 
solution to apparent antinomies of reason, is a necessary requirement 
for our ability to reason scientifically. If we accept Kant’s analysis, and 
acknowledge a universal capacity to reason scientifically, this a priori 
structure turns out to be not only necessary, but universally true. This, 
in turn, allows us to contemplate universal mathematical truths in the 
particular constructions contained in pure spatial intuition.

Fichte’s first objection was that this a priori spatial intuition is not 
enough to ground geometry. If all we have is this a priori intuition of 
a pure realm of magnitudes, everything we position there is relative 
and underdetermined. Indeed, pure intuition lacks grounding in loca-
tion (everything that we construct can be displaced in pure intuition 
without consequence) and in directionality (horizontality, verticality, 
and hence, according to Fichte, also a clear notion of right angle). In 
order to provide a proper grounding to our construction, we need to 
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impose on this intuition a frame of local and directional reference 
(Wood 2012, 90).

According to Fichte, this frame of reference consists of a fundamen-
tal infinite horizontal line and a fundamental infinite vertical line that 
intersect at a fundamental point of reference (like the axes of a Carte-
sian plane). The fundamental horizontal line is the diameter of an in-
finite circle that circumscribes the entire space (Wood 2012, 110). This 
frame is constructed by the thinking subject. Since, according to Kant, 
a priori spatial intuition cannot contain something infinite (it can only 
construct indefinite increase), the required fundamental construction 
cannot be obtained by pure spatial intuition. It therefore has to be 
constructed in a more fundamental sort of intuition—a nonsensual, 
so-called intellectual intuition.

This “intellectual intuition,” abstracted not only from any empirical 
experience, but also from any pure sensory structure, diverges from 
Kant’s doctrine. It adds to the Kantian architecture an intuition where 
reason may construct its concepts (as we construct shapes in the pure 
intuition of space), rather than just contemplate their logical possibil-
ity. To understand this difference, recall (from the second section in 
chapter 1) the Kantian distinction between a conceptual triangle, which 
is only subject to analytic logical derivations that follow from defini-
tions, and a constructed triangle in the pure intuition of space, where 
one can construct further auxiliary lines that allow proving new nec-
essary synthetic truths, such as the one about the sum of angles.

Fichte considers the concepts that he constructs in the intellectual 
intuition as necessary concepts. Indeed, if we fail to construct the fun-
damental lines, then, according to him, we will have no frame in which 
to think mathematically about the world. These constructions are 
therefore a necessary condition for our ability to apply mathematics 
to science. But Fichte’s intellectual intuition is not just about mathe-
matical entities. It is inspired by mathematical constructions, but in-
cludes much more general ontological constructions, including the “I” 
and the intersubjective universe that contains it.

According to Fichte, each philosopher must realize his concepts in 
construction. But since these constructions are performed in an intu-
ition that abstracts from every contingency of experience, Fichte con-
cludes that they are universally necessary for anyone who chooses to 
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philosophize. The model here, again, is mathematical truths, which 
necessarily follow for anyone who makes mathematical constructions 
in Kant’s pure spatial intuition, which is abstracted from any individ-
ual contingency. Indeed, Fichte’s Wissenschafstlehre recommends the 
study of geometry as training for the study of philosophy, and he was 
sometimes referred to as “the Euclid of philosophy.”

We see here how mathematics (or, rather, a philosophical image of 
mathematics) shapes a more general philosophical system. Mathe-
matics here is not merely reactive. It is productive in two ways: as an 
inspiration for a philosophical system, and inside this system, as a 
universally necessary creative activity.

There is, however, an important difference between mathematical 
constructions and Fichte’s more general ontological constructions. 
While geometry starts with the construction of a form and then de-
rives mathematical products, the philosopher

starts with the “products” (space, time, the causal structure of the sensible 
world, for example) . . . and then attempts to execute his construction by 
starting with the only material available following the initial act of global 
abstraction: the field of pure self-directed self-activity. (Breazeale n.d., 12)

What one constructs in intellectual intuition are the concepts neces-
sary to explain the given “products” (space, time, and so on). These 
concepts, in turn, are shown to presuppose other concepts that need 
to be constructed to make sense of the whole.

It is crucial for our argument that Fichte considers his constructions 
not only as necessary, but also as real. This reality, however, is not 
necessarily about correspondence to external objects. Fichte does de-
mand that the final products of philosophical constructions (for exam-
ple, the I, the law-governed world) be measured by their correspon-
dence to lived experience; if they fail to correspond, then philosophy 
failed to provide what it sought: the concepts necessary for rational 
engagement with experience. However, “the same is not true of the 
elements employed in this construction— the various, discreetly pos-
ited acts of the I and the various preliminary products of the same. . . . 
There is nothing outside of our construction that corresponds to these 
elements and to this process” (Breazeale n.d., 32). The correspondence 
is sought at a global level, not the level of detail.
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To understand this claim in a mathematical context, one can think of 
Bombelli’s solution to cubic equations (chapter 2). The cubic equation 
and its solution are real, and have counterparts in experience. But the 
construction of the solution goes through roots of negative numbers—
conceptual entities that have no counterparts in Bombelli’s geometric 
experience of the problem. Similarly, the symbol x in the solution of 
combinatorial problems by generating functions (chapter 4, discussion 
around figure 6.4) adds a mathematical element that does not corre-
spond to anything in the experiential counterpart of the combinatorial 
problems.

So where is the reality of Fichte’s constructions? The constructed 
concept of the I and the act of construction are, according to Fichte’s 
Attempt at a New Presentation of the Wissenschaftslehre, “one and the 
same, and when we think of this concept, we do not and cannot think 
of anything but what has just been described. It is so, because I make 
it so” (quoted in Breazeale n.d., 34). Since construction of concepts in 
intellectual intuition is an actual act of an actual subject, and since 
the constructions subsist in this act of construction, the constructions 
are real.

The elements of Fichte’s construction are the free creation of the 
philosophizing subject. They are necessary to make sense of the world, 
and are real as actual actions of an actual subject, but are not given in 
advance and do not necessarily have empirical references. Still, due to 
the matching between experience and intellectual construction at the 
level of overall result, we may think of empirical experience as if it 
were structured by the philosophical construction. This, again, paral-
lels the practice of the geometer, who

by virtue of the self-evidence of his demonstrations, is entitled to view the 
various actual figures he encounters within experience “as if” they had 
been constructed in the same way as were those pure figures constructed 
by him in imagination (even though he knows very well that they were not 
constructed in this way) and to assume that whatever is found to be nec-
essary in the case of the latter will also be necessarily true of the former. 
(Breazeale n.d., 33)

We end up with a series of real acts of intellectual constructions, which 
match overall experience, but are free to follow their own internal logic 
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of detail. Even though they match empirical experience only at the 
global level, they can still be applied to understand reality.

I won’t try to solve the tension between the freedom and necessity 
of constructions in Fichte’s thought, or explain how a construction 
in intellectual intuition is different from reasoning with hypothetical 
concepts, or discuss the viability of abstracting from everything that 
Fichte claims to abstract from. Rescuing Fichte from these difficulties 
is not my purpose here. Instead, what interests me here is the relation 
between an ideal reality—the real autonomous actions of a thinking 
subject—and given empirical experience. In Fichte’s system, the for-
mer must, at some level, fit the latter, but is not isomorphic to it. It 
partakes in a different kind of reality, subject to a different set of con-
straints. It shapes a conceptual world that is necessary to make sense 
of the empirical one.

If, instead of saving Fichte, we wish to bring him to bear on the 
philosophy of mathematical practice, we can liken his free construc-
tions to the real activity of the mathematician. Mathematical constructs 
are real not because they are all descriptively adequate, but because 
they are identified with the act of construction—the real mathematical 
activity of doing things with mathematical signs. If we understand 
mathematical reality as this reality of practice, we part with many of 
Fichte’s abstractions and claims to universality, but we remain with a 
very real notion of mathematical practice.

This will not solve Steiner’s challenge, because Fichte starts with 
empirical phenomena, and retraces the necessary concepts, whereas 
Steiner notes that we sometimes follow internal mathematical motiva-
tions and stumble upon models of empirical reality. But Fichte’s out-
line does make sense of the experience of creativity and necessity that 
mathematicians testify to. It is real because we really do it this way 
under some very real constraints, and it is creative because it is we 
who come up with these activities (the kind of creative reality mani-
fested, for example, by formal variables in generating functions and by 
complex numbers in the solution of real equations). This is the kind of 
reality that is experienced in actually solving mathematical exercises, 
as opposed to the sense of a made up artificial language sometimes 
experienced by observers who are not engaged in doing mathematics. 
The reality of application supports mathematical constructions only 
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at the edges—their interaction with empirical reality—not in the core 
of their actual practice.

To conclude this discussion of Fichte, I want to make one crucial 
note. Not every experience can be reconstructed in Fichte’s intellec-
tual intuition. Some contingent and relative experiences or feelings 
remain inaccessible to philosophical construction, which begins by 
abstracting from the contingencies of experience and the specificity 
of a single subject. According to Fichte, this is the original limitation 
of the I. This limitation is not some mere dispensable background noise. 
This limitation defines the I as finite (Breazeale n.d., 34). The ideal con-
struction of the philosopher is limited in its capacity to match empiri-
cal experience, and cannot construct itself without acknowledging this 
limitation. For Fichte, as for the mathematician, the reality of the self-
constructed I is no substitute for the reality of given experiences.

Schelling

While Fichte posited two realities (one experienced as given and one 
self-constructed) that must fit “at the edges,” but otherwise follow dif-
ferent paths, Schelling was much more ambitious in his attempt to 
match thought and being. In order to reconcile the freedom of the 
subject with the givenness of nature, he required the philosopher to 
abstract not only from experience, but also from the confinement of 
thought to an intellectually intuiting subject. Philosophizing would 
then no longer be the act of an I, but of a “pure subject-object” (Breazeale 
n.d., 50).

The very possibility of this act assumes an integration of objective 
and subjective realities as aspects of a unified whole. This is not an 
assumption that can be proved, according to Schelling, but a starting 
point for any system that hopes to affirm a unified world, rather than 
two worlds sewn together at the edges—one subjective and one objec-
tive. Without this assumption, according to Schelling, our science is 
doomed to fail, as it is not properly grounded (Breazeale n.d., 59).

Assuming this integration, there are two trajectories for philoso-
phizing. One is “natural philosophy,” which begins from the objective 
and derives the subjective. The other is “transcendental idealism,” which 
follows the reverse path. The hypothesized integration of nature and 
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thought is supposed to guarantee the correspondence of these two 
trajectories.

More specifically, the purpose of transcendental idealism would be 
“to explain the idea of an objective world which was absolutely inde-
pendent of our freedom, indeed which limits this freedom, by a process 
in which the I sees itself as unintentionally but necessarily engaged, 
precisely through the act of self-positing” (quoted from The History of 
Modern Philosophy, Gare 2011, 43). Natural philosophy, in turn, would 
explain the idea of a subjective world by starting with a self construct-
ing nature encountering internal conflicts and forming internal divi-
sions. Idealism and realism would be complementary narratives in a 
unified ideal-realism (Gare 2011, 58–59).

This structure required another break from Fichte. Fichte assumed 
a world of given phenomena and a constructing subject. For Schelling, 
however, both the subject and nature were constructive. The common 
principle of the subject and of nature is that of “self activity positing 
itself and coming to be through limiting itself and being limited” (Gare 
2011, 47). How does a subject/object division emerge in such a sys-
tem? Schelling begins his philosophy of nature with a dynamic natu-
ral process, and derives a “multiplicity of actants [that] reciprocally 
restrict themselves (prehending each other) to effect the unity of a 
product” (Gare 2011, 49; one can think here of a cloud of gas in space 
evolving into a system of planets orbiting a star). The subject/object 
is a division derived from an integrated dynamic process in order to 
make sense of the whole, not a given starting point.

Since the conscious subject is derived from within nature, its own 
constructions form part of the construction of nature, rather than 
simply reflect it. Therefore, according to Schelling’s First Outline, “to 
philosophize about nature means to create nature” (Breazeale n.d., 48). 
Indeed, we intervene in nature based on our conceptual judgments 
(Gare 2011, 45), so intellectual constructions have natural implications. 
This formulation can also be reversed: our embeddedness in nature 
impacts our intellectual constructions, so the constructions of nature 
have conceptual implications. They are all part of the same integrative 
process.

I’m well aware that this may sound mystical to the modern ear. 
Many readers considered it esoteric and circular in Schelling’s lifetime 
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as well. This effect is further aggravated when Schelling goes from his 
philosophy of nature to his philosophy of identity. While the former 
was fallible, dependent on empirical observation and limited in reach, 
the latter simply discarded as unreal any contingent phenomena that 
couldn’t be subsumed into the philosophical system (Breazeale n.d., 
68), bringing Schelling dangerously close to what I presented earlier 
as the straw-man of idealism.

My point in bringing Schelling into this narrative is to suggest that 
conceptual (and mathematical) thinking is part of the world that it 
purports to describe, and that it intervenes in this world through its 
products (tools, practice, technology). They shape our behavior in the 
world, and, as a result, transform this world. Mathematical reasoning 
and the world in which it takes place are co-constructive.

We can think here of the Black-Scholes vignette from the introduc-
tion: if we accept that the partial correspondence of the prices of op-
tions and the Black-Scholes formula is, at least in part, a self fulfilling 
prophecy, then mathematics clearly shapes the world we live in. Since 
the products of math dependent science and technology seem to change 
the earth’s atmosphere, this effect is not confined to social reality. 
Mathematical practice, then, is not only a real activity, as in Fichte, but 
also has real impact on the world we inhabit. (If we think, along with 
Maddy, about fundamental mathematical truths as those hypotheses 
that turn out to be the most mathematically productive, we gain an-
other sense of how new concepts can shape new realities.)

In Fichte’s worldview, mathematical concepts fit the world because 
they are designed in advance to fit at some integral level, leaving the 
internal organization to the autonomy of human reasoning. In Schell-
ing’s view, mathematical and natural constructions conform because 
the phenomenal world and mathematical practice are two elements 
articulated from a single dynamic system: the system of human exis-
tence in the world. Within this dynamic system, they constrain each 
other: the world constrains mathematical practice and thought, and 
mathematics produces artifacts, practices and perceptions that reform 
the world. The relative autonomy of subject and object is derived from 
the self organization of a unified natural-rational process into rela-
tively articulated components.
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If, as earlier, we neglect the necessary and universal aspect of Schell-
ing’s abstractions, we end up with an image of mathematics that is 
much in line with the constraints based approach to the philosophy of 
mathematical practice suggested in chapter 3. Mathematics emerges 
from negotiating a continuum of subjective and objective constraints 
in a dynamic life world. From within these constraints, it emerges as a 
semi-autonomous system of knowledge. But it also impacts the world 
in a way that reforms and rearranges these constraints in a manner 
that can produce new systems of mathematical knowledge.

Hermann Cohen

Hermann Cohen provides us with a related account in a more specifi-
cally mathematical-scientific context. His approach is similar to Fichte’s, 
but the details are somewhat different, as he is concerned with the 
unity and continuity of phenomena.

Cohen believes that the pure schemes of space and time do not pro-
vide an absolute unit (we can use different scales of measurement, 
break a unit into subelements and group multiple elements to form 
new units), do not allow us to conceive of curves as unified entities 
(as opposed to arbitrary collections of segments or points), and do not 
account for the notion of continuity (how points are connected to 
each other in a continuum, how infinite processes reach their limit). 
Kantian spatial and temporal intuition, according to Cohen, only pro-
vides us with relative unities and discrete collections (Cohen 1883, 
§31, 37, 58).

In order to adhere to the Kantian system, Cohen seeks the solution 
in Kant’s notion of “intensive magnitude.” Kant seems to use this term 
in two senses. The first sense opposes intensive magnitudes to exten-
sive magnitudes. The latter, like length, can be divided into units and 
added by aggregation. The former, like temperature, cannot be broken 
up into units and aggregated. For instance, you can’t break water at 
50 degrees Celsius into 50 units of water at a temperature of 1 degree 
each, and if you pool together two buckets of water at 50 degrees, the 
water temperature will remain 50 degrees.

www.TechnicalBooksPdf.com



210  •  Chapter 7

The second sense of intensive magnitude is rather different, and has 
to do with a degree of reality—how conceptually articulated a given 
experience is. To make sense of this we must note that Cohen’s notion 
of reality (Realität) is not the notion of empirical givenness (Wirklich-
keit). Reality is derived from the Latin res, meaning “thing.” It refers 
to how conceptually articulated something is, distinguishing a thing 
from a vague experience. On the one hand, we can experience some-
thing as given without being able to understand it as clear and distinct 
object (such as unarticulated background noise); on the other hand, 
something constructed by the creative imagination (such as a winged 
horse) can be perfectly thing-like, or real, without being empirically 
given. Reality, in this specialized sense, must have something to do 
with thought.

The following paragraph illustrates this notion of reality:

Nature is not something given there in itself, which requires an applica-
tion of our mathematical description; rather, it is first discovered and pro-
duced by these descriptions. If conic sections [for example, ellipses] had 
not been thought of, we would not have known the natural process formed 
by the orbits of planets. In that case, this process would be at best a prob-
lem, perhaps the problem of epicycles [referring to the classical attempt 
to model planet motion by superposing circular motions]. This product of 
pure geometry [the conic sections] is not applied to the nature of planet 
orbits given in itself, but is used to produce this nature, which, without 
such pure means of production, would be given only as a question, not as 
certified natural process. (Cohen 1883, §91)

Planet orbits only become scientific entities once they are articulated 
rationally. Before science manages this articulation, planet orbits are 
but an imperfectly conceived challenge: discrete glimmers observed 
here and there, never given as unified continuous wholes. They can be 
roughly related to the notion of epicycles, but not properly grasped 
by it. Planet observations are empirically given, but without conic sec-
tions they are not rationally formed as clear and distinct orbits, and 
are therefore not endowed with reality in Cohen’s sense.

When Cohen considers intensive magnitudes, he prefers to under-
stand them as measures of the reality of phenomena rather than as 
intensities of sensation (heat, light, and so on). This is not an unprob-
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lematic interpretation of the Kantian text, but one that Cohen is firmly 
committed to: “The degree [the intensive magnitude] is a determina-
tion not so much of sensation as of pure thought” (Cohen 1883, §78). 
The intensive magnitude of something given empirically establishes 
it as an articulated thing, that is, as real. But this intensive magnitude 
itself is a product of reason, not something given.

So what exactly is this mysterious intensive magnitude that makes 
scientific experience real? According to Cohen, it is the infinitesimal. 
Indeed, the infinitesimal is not given in experience. Rather, it is a prod-
uct of reason that articulates natural phenomena as things, therefore 
endowing them with reality.

How does the infinitesimal do that? First, according to Cohen, the 
infinitesimal is not a relative quantity attributed contingently to ex-
tensive magnitudes (like articulations of magnitudes into units), but 
applies as a nonempirical measure of change. Since it does not depend 
on the contingencies of subjective empirical perception, it is, in Cohen’s 
terms, absolute. The infinitesimal connects each point to its neighbors, 
thus forming continuity. It also connects processes to their limits. 
Indeed, the infinitesimal is the difference between a function and its 
limit, but since it is not present empirically, this difference can be seen 
as an identification of the end of the process with its limit (there is a 
strong affinity here to Wronski’s approach to infinity [Wagner 2014], 
but I can’t establish a historical connection; Solomon Maimon [see 
Freudenthal 2013] would have been a more accessible influence, but 
Cohen claimed that he only read Maimon’s work later in his career).

Perhaps more importantly, the infinitesimal allows us to express 
curves and other physical phenomena by unified formulas. Indeed, 
some curves, such as circles and conics can be described by equations 
without resorting to infinitesimals, but differential equations can de-
scribe a much richer set of phenomena by finitely expressible equa-
tions. In fact, in eighteenth-century and early nineteenth-century math-
ematics, functions were sometimes defined as that which is expressed 
by a single formula.

Now this articulation could be read in terms of Fichte’s and Schell-
ing’s constructions: we have here a concept—the infinitesimal—which 
is necessary in order to make sense of empirical experience. But Cohen 
brings another twist. The infinitesimal is not constructed by Fichte’s 
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abstract subject, nor by Schelling’s even more abstract subject-object. 
The unified consciousness that constructs the infinitesimal is a cul-
tural, discursive and intersubjective consciousness: science as dis-
course (Cohen 1999, 17). The infinitesimal is validated by its necessity 
for turning empirical experience into a reality grounded in commu-
nal rational discourse, rather than in an abstract rational intellectual 
intuition.

Cohen’s praise for the infinitesimal is somewhat reactionary with 
respect to his contemporary mathematics. The late nineteenth century 
is the time of the arithmetization of geometry, the discretization of the 
real line into a set of points, and the rejection of infinitesimals in favor 
of epsilon-delta formulations. It may be that Cohen is worried that 
his contemporary science is losing something crucial as it discards the 
infinitesimal in favor of an arithmetization that allows all sorts of non 
smooth “monster” functions to roam free.

Cohen’s anachronism explains, perhaps, why Ernst Cassirer, Co-
hen’s student and colleague, preferred relations and functions over 
infinitesimals as his realizing concepts for science. But either way, the 
neo-Kantian reality of these concepts is not just about given experi-
ence, it is about given experience articulated into real things by dis-
cursive concepts grounded in thought rather than sensation. Without 
such concepts, our sensory experience would be the experience of un-
articulated noise (discrete glimmers, rather than orbits modeled after 
conic sections). Concepts therefore articulate reality into unities and 
continua, rather than just reflect it as is.

The controversy between Cohen and Cassirer brings about the 
issue of relativity: is there a unique necessary conceptual framework 
for reality, or can we have various competing frameworks? Cohen’s 
position seems to tend toward necessity and uniqueness, at least as a 
regulative idea. Cassirer’s later work on symbolic forms acknowledges 
that several alternative frameworks can realize our experience (myth, 
religion, language, science). There is a clear sense of advance as Cas-
sirer compares these systems historically, but also an apparent recog-
nition that they cannot refute each other.

If we want to push further in the direction of relativity, we can turn 
to Harold Garfinkel’s ethnomethodology as applied to mathematics by 
Eric Livingston. The ethnomethodological approach emphasizes how 
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people make sense of social situations without assuming that all social 
rules are given in advance. People are obviously subject to social con-
straints, but often have room to make up some rules as they go along. 
Livingston (1986, 1999) emphasizes the contingencies of historical 
and modern practices of proving and shows how different historical 
mathematical discursive frameworks were constructed to establish 
mathematical claims as true. The realizing power of mathematical con-
ceptualization, in this view, does not lead to a unique framework.

But regardless of the question of relativity, Cohen’s narrative pre
sents us with a mathematics that is not only real because it is imple-
mented in action (Fichte) and is co-constitutive of empirical reality 
(Schelling), but because it turns unarticulated experience into an artic-
ulated set of phenomena with clear continuities and individuations. If 
we allow ourselves (pace Cohen) to superpose the discursive articula-
tions of science onto individual cognitive processes, we come close to 
the picture presented in the fourth section of chapter 5: conceptual 
articulations shape perception by instigating preafference and as op-
erators that constrain the way stimuli give rise to brain dynamics (or 
attractors), thus producing various conceived realities.

These three approaches point to a focus on mathematical practice 
and its interaction with the world, rather than on mathematics as a 
set of real or nominal abstractions. Despite their obscurity, these ap-
proaches have much more to do with how we learn, produce, and use 
mathematics than some of the most dominant expressions of contempo-
rary ontological and logical debates in the philosophy of mathematics.

The Unreasonable(?) Applicability of Mathematics

The previous sections were not meant to teach nineteenth-century post-
Kantian philosophy. They were meant to suggest that we can make 
sense of the idea that thought constructs reality without succumbing 
to the straw man of idealism. One sense is Fichte’s, where a subjec-
tive reality corresponds to given experience only at an overall level, 
while its details follow a different kind of autonomous evolution; it is 
nonetheless real, because it is the product of the actual work of an 
actual subject, and is required for a rational understanding of given 
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experience. Another sense is Schelling’s subjective-objective reality, 
reminding us that thought may lead to action that changes nature, and 
vice versa. This view endorses a dynamic system of nature and thought 
that constantly rearticulate each other while organizing themselves 
into relatively autonomous subsystems. Finally, there’s Cohen’s inter-
subjective reality, where discursive concepts are crucial for us to make 
scientific sense of things—concepts without which our experience will 
remain noisy and vague, not worthy, according to Cohen, of the adjec-
tive “real.”

This summary should not be read as advocating idealism. It should 
be read as an attempt to argue that the term “reality” is too rich to be 
reduced to a force constraining us from outside and opposed to auton-
omous creations of the mind. The post-Kantian tradition is important 
because it offers various more complex articulations of the relations 
between being and thought. It argues for a reality of ideas that is con-
tinuous with the reality of nature.

This reality of ideas means that they really impact our world and 
help shape it. If we think of mathematics as a cultural negotiation of 
constraints (natural, social, practical, cognitive . . . ), mathematical 
ideas feed into these constraints and take part in reshaping them. So 
to say that thought shapes reality is not to claim that we make every-
thing up as we go along, or that we simply impose our thoughts on 
reality.

This line of thinking encourages us to focus on the mathematics as 
a real activity, as something that interacts with the world, and as 
something deeply embedded in our scientific sense of realness. It en-
courages engaged, practice-oriented mathematics, as opposed to view-
ing mathematics as a formal game, a nominal abstraction or a reflec-
tion of a fully given outside world. It imposes an ethics of mathematical 
engagement as opposed to a detached form of objectivity that only 
states truths without taking any responsibility for their formation and 
impact.

Now, if mathematical constructions are real in the preceding senses, 
then the effectiveness of mathematics in the natural sciences is perhaps 
not so unreasonable as claimed by Wigner. Mathematics is designed 
to fit, at some level, natural phenomena (Fichte); it is embedded in our 
technology that shapes new phenomena (Schelling); and it defines what 
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we can take seriously as a scientific reality, rather than just unarticu-
lated noise (Cohen).

In many ways, the relation between mathematics and phenomena 
should not be more surprising than the relation between language and 
phenomena: many phenomena can be represented by language (of 
course, not any linguistic description fits any phenomena, but this is 
true of mathematics as well); language is a good framework for produc-
ing reasonable conjectures about the world; language helps us commu-
nicate and thereby reshape the world; and whatever is not linguisti-
cally describable is factored out of the discursive system of science.

But this does not quite resolve the problem of the surprisingly suc-
cessful application of mathematics to empirical phenomena. Mark 
Steiner’s (1998) take on the problem invokes several examples of math-
ematical constructions, motivated by intra-mathematical analogies 
and anthropocentric pragmatic and aesthetic constraints, which end 
up providing precise models for physical realities far removed from 
the anthropocentric constraints that shaped them. It’s not that all, or 
even most mathematics is empirically useful, but that mathematics as 
a whole, despite its human origin, is an efficient system for formulat-
ing surprisingly successful scientific conjectures. Steiner considers this 
as evidence for the anthropomorphic design of the universe—a design 
of the universe in the image of human reason. According to Steiner, 
such design explains how the universe is amenable to description by 
mathematical models that evolve from the internal aesthetics of human 
reasoning, and that needn’t have anything to do, a priori, with macro- 
or microphysical processes. This design might suggest some superven-
ing divine or natural reason. I’ll try to offer a more secular explanation.

Several scholars (Carrier 2003; Maddy 2007, 335–38; Simons 2001, 
183) cast doubt on the break that Steiner postulates between his exam-
ples of human mathematical constructions on the one hand and the 
physical context to which they are supposedly surprisingly applied 
only post hoc. But this is not the direction I want to take here. I would 
like to explain why it is, after all, reasonable, that a mathematical con-
struction that evolved in one context can end up applying to other, 
unrelated contexts.

The answer can’t be “statistical” either. There are indeed many math-
ematical structures, and many phenomena, and there is some chance 

www.TechnicalBooksPdf.com



216  •  Chapter 7

that they may accidentally correspond. But since we don’t have a quan-
titative model for analyzing this probability (What constitutes a “sin-
gle phenomenon” and a “single mathematical model”? How many phe-
nomena and models are there? What is the stochastic process by which 
we look for a model that fits a given phenomenon?), this is a dead end. 
For all we know, the chance of correspondence may be smaller than the 
chance of a typing monkey proving a complicated theorem.

Yet another attempt can suggest that there is some inherent simi-
larity between very different natural phenomena, which makes them 
likely to be captured by variations on existing mathematical models. 
But similarity, as argued by Steiner (1998, 53), is a very underdeter-
mined term. What kind of similarity can we articulate between the 
motion of pollen and stock prices, both describable by means of Brown-
ian motion, other than the similarity of the mathematical models that 
manage to describe them both? If we simply suggest post hoc that 
there had to be some internal underlying similarity preexisting the 
common mathematical modeling, we’re begging the question. And 
even if there is some sort of underlying nonmathematical similarity 
between these phenomena, there’s no reason why it should be cap-
tured by mathematically similar models.

So if we want to explain the applicability of mathematics based on 
a notion of similarity, we have to articulate this similarity in a more 
precise manner. Similarity cannot apply to phenomena as such. In-
stead, it should apply to the scientific articulations of phenomena. So 
let’s follow this thread.

Indeed, dwelling in the world as scientists do is not about a passive 
observation of phenomena. It is about channeling phenomena via in-
struments of observation and measurement into mathematical forms of 
inscription. Our instruments of observation and measurement already 
embody mathematical relations—they are constructed and calibrated 
based on mathematical knowledge. Mathematical forms of inscription 
further impose mathematical relations on recorded phenomena. Ob-
served scientific phenomena are therefore already partly realized (in 
Cohen’s sense) or constructed (in Schelling’s or Fichte’s sense) by 
means of mathematical concepts. These realizations and constructions 
are no less restrictive than linguistic encoding; and just as linguistic 
encoding imposes a restricted array of similar grammatical relations 
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on very different sentences, so does mathematical encoding reduce 
phenomena to a field of restricted mathematical relations. What’s not 
expressible within these constraints is simply factored out of quanti-
tative science.

In this restricted context of mathematically shaped and encoded 
observations (rather than “raw phenomena”), the notion of similarity 
between different collections of observations is more clearly defined. 
Assuming that mathematized observation and formulation force em-
pirical phenomena into a restricted domain, we can argue that simi-
larity between diverse mathematized phenomena is not unlikely, and 
therefore it is not terribly surprising that different mathematically 
shaped and encoded observations are captured by similar mathemat-
ical models, even if the development of these models depended on 
intra-mathematical motivations rather than the eventual empirical 
application. The notions of similarity used here all relate to mathe-
matical structures, and are therefore homologous and correlated. The 
mathematical similarity of mathematized phenomena is intrinsically 
related to the mathematical similarity of the mathematical models that 
capture them.

To put it in terms of another metaphor, if we share the same building 
tools and technologies, then it is not terribly surprising that we some-
times come up with similar buildings in very different terrains and 
physical conditions, as long as we note that these buildings are built 
only in portions of the environment that are amenable to our building 
tools and technologies. Analogously, if the reality that is scientifically 
accessible to us is indeed realized or constructed in the image of our 
mathematical concepts and tools, then the relatively small portion of 
empirical reality that we manage to realize or construct is precisely 
that which is amenable to our restricted set of mathematical tools and 
technologies, and can therefore be captured by the relatively small 
world of mathematical models emerging from human reason. In a way, 
science carves precisely that portion of our natural-conceptual-practical 
reality that is explorable in terms of mathematical reason.

This is not a complete solution to Steiner’s problem, as it assumes 
some sort of “compactness” in the realm of mathematically shaped 
and encoded empirical observations that would make similarities likely. 
However, we still have no a statistical framework to establish this 
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compactness (we still have no articulation of single elements, an over-
all count or a stochastic process of selection). So perhaps the problem 
is not solved, but only reduced: from the “unreasonable applicability of 
mathematics to natural science,” to the “unreasonable(?) applicability 
of mathematical models to records of empirical observations produced 
by mathematically designed instruments and mathematical forms of 
inscription.” Still, even in this view, it would be an exaggeration to 
claim, with Nietzsche, that scientists discover that which they had 
themselves hid behind the bush.

■  ■  ■  ■  ■

To put it in a nutshell, this book described mathematical practice as a 
negotiation of various constraints by means of rearticulated, super-
posed, and deferred interpretations in a contemplated and experienced 
reality. The practical task of the humanist in this context remains, then, 
to provide a detailed and contextual account of how mathematical 
knowledge is formed as part of our strategies of inhabiting our con-
strained and constraining world, building on ideas, tools, manipula-
tions of inscriptions and on the observations mediated through them.

Different thoughts and tools that depend on combining various 
metaphors and analogies allow us to inhabit our world differently, 
to know and carve different portions of reality. I like thinking, with 
Steiner, of known reality as anthropomorphically designed. But I’d 
like to think of it not simply as a given anthropomorphic fact; I’d like 
to think of reality, with the many scholars, practitioners, and activists 
who keep experimenting with our language, knowledge, and world, 
as a creation that we can, to a certain extent, reform, so as to make it 
better.
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